

Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants: 2020 Update

November 2021

Zhegang Ma Thomas E. Wierman Kellie J. Kvarfordt



INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

#### DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

INL/EXT-21-65055

# Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants: 2020 Update

Zhegang Ma<sup>1</sup> Thomas E. Wierman<sup>2</sup> Kellie J. Kvarfordt<sup>1</sup>

November 2021

<sup>1</sup>Idaho National Laboratory Idaho Falls, Idaho 83415

<sup>2</sup>Schroeder Incorporated Island Park, Idaho 83429

https://www.inl.gov

Prepared for the Division of Risk Analysis Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission NRC Agreement Number 31310019N0006 Task Order Number 31310019F0022 Page intentionally left blank

#### ABSTRACT

This report documents the quantitative results of the current industryaverage performance for components and initiating events (IEs) at U.S. commercial nuclear power plants (NPPs). It represents the third update of the original analysis in NUREG/CR-6928 with data through 2020. Continuous characterization and updating of current industry-average performance with the latest industry data available are important steps in maintaining up-to-date risk models. Typically, data from 1998–2002 were used in NUREG/CR-6928, data from 1998–2010 in the first update, data from 1998–2015 in the second update, and data from 2006–2020 in this update, although many IEs required longer periods for adequate characterization of frequencies in all these analyses.

As with NUREG/CR-6928 and previous updates, four types of events are covered in this report: component unreliability (e.g., a pump that fails to start or fails to run), component or train unavailability resulting from test or maintenance outages, special event probabilities covering operational issues (e.g., pump restarts and injection valve reopenings during unplanned demands), and IE frequencies. Results (in the form of beta distributions for failure probabilities upon demand and gamma distributions for rates) are used as inputs to the U.S. Nuclear Regulatory Commission standardized plant analysis risk models covering U.S. commercial NPPs. Page intentionally left blank

| 1.   | INTROE   | DUCTION                                         | 1    |
|------|----------|-------------------------------------------------|------|
|      | 1.1      | Background                                      | 1    |
|      | 1.2      | What is New in the Updates                      | 2    |
|      | 1.3      | Report Organization                             | 4    |
| 2.   | COMPO    | NENT UNRELIABILITY                              | 5    |
| 3.   | COMPO    | NENT OR TRAIN UNAVAILABILITY                    | 15   |
| 4.   | SYSTEM   | A SPECIAL EVENTS                                | 18   |
| 5.   | INITIAT  | ING EVENT FREQUENCY                             | 20   |
| 6.   | COMPA    | RISON WITH PREVIOUS RESULTS                     | 24   |
| 7.   | REFERE   | ENCES                                           | 34   |
| Appe | ndix A C | Component Unreliability Data Sheets 2020 Update | A-1  |
| A-1. | VALVES   | S                                               | A-1  |
|      | A-1.1    | Air-Operated Valve (AOV)                        | A-1  |
|      | A-1.2    | Motor-Operated Valve (MOV)                      | A-4  |
|      | A-1.3    | Hydraulic-Operated Valve (HOV)                  | A-7  |
|      | A-1.4    | Solenoid-Operated Valve (SOV)                   | A-9  |
|      | A-1.5    | Explosive-Operated Valve (EOV)                  | A-11 |
|      | A-1.6    | Vacuum Breaker Valve (VBV)                      | A-13 |
|      | A-1.7    | Turbine Bypass Valve (TBV)                      | A-15 |
|      | A-1.8    | Main Steam Isolation Valve (MSV)                | A-17 |
|      | A-1.9    | Check Valve (CKV)                               | A-19 |
|      | A-1.10   | Manual Valve (XVM)                              | A-22 |
|      | A-1.11   | Flow Control Valve (FCV)                        | A-24 |
| A-2. | PUMPS    |                                                 | A-26 |
|      | A-2.1    | Motor-Driven Pump (MDP)                         | A-26 |
|      | A-2.2    | Turbine-Driven Pump (TDP)                       | A-34 |
|      | A-2.4    | Engine-Driven Pump (EDP)                        | A-38 |
|      | A-2.5    | Positive Displacement Pump (PDP)                | A-41 |
|      | A-2.6    | AFW Pump Volute (PMP)                           | A-45 |
| A-3. | GENER    | ATORS                                           | A-46 |
|      | A-3.1    | Emergency Diesel Generators (EDG)               | A-46 |
|      | A-3.2    | Hydro Turbine Generator (HTG)                   | A-49 |
|      | A-3.3    | Combustion Turbine Generator (CTG)              | A-50 |
|      | A-3.4    | High-Pressure Core Spray Generator (HPCS)       | A-51 |

# CONTENTS

|      | A-3.5  | Station Blackout Generator (SBO)                   | A-52 |
|------|--------|----------------------------------------------------|------|
| A-4. | RELIEF | VALVES                                             | A-53 |
|      | A-4.1  | Safety Relief Valve (SRV)                          | A-53 |
|      | A-4.2  | Safety Valve (SVV)                                 | A-55 |
|      | A-4.3  | Power-Operated Relief Valve (PORV)                 | A-57 |
|      | A-4.4  | Low-Capacity Relief Valve (RVL)                    | A-59 |
| A-5. | ELECTR | RICAL EQUIPMENT                                    | A-61 |
|      | A-5.1  | Battery Charger (BCH)                              | A-61 |
|      | A-5.2  | Battery (BAT)                                      | A-63 |
|      | A-5.3  | Automatic Bus Transfer Switch (ABT)                | A-64 |
|      | A-5.4  | Circuit Breaker (CRB)                              | A-66 |
|      | A-5.5  | Inverter (INV)                                     | A-69 |
|      | A-5.6  | Bus (BUS)                                          | A-70 |
|      | A-5.7  | Motor Control Center (MCC)                         | A-71 |
|      | A-5.8  | Transformer (TFM)                                  | A-72 |
|      | A-5.9  | Sequencer (SEQ)                                    | A-73 |
|      | A-5.10 | Fuse (FUS)                                         | A-74 |
| A-6. | STRAIN | IERS                                               | A-76 |
|      | A-6.1  | Filter (FLT)                                       | A-77 |
|      | A-6.2  | Self-Cleaning Strainer (FLTSC)                     | A-79 |
|      | A-6.3  | Sump Strainer (SMP)                                | A-80 |
|      | A-6.4  | Traveling Screen Assembly (TSA)                    | A-81 |
|      | A-6.5  | Trash Rack (TRK)                                   | A-82 |
| A-7. | REACTO | OR PROTECTION                                      | A-83 |
|      | A-7.1  | Bistable (BIS)                                     | A-83 |
|      | A-7.2  | Process Logic Components (PLDT, PLF, PLL, PLP)     | A-84 |
|      | A-7.3  | Sensor/Transmitter Components (STF, STL, STP, STT) | A-85 |
|      | A-7.4  | Reactor Trip Breaker (RTB)                         | A-86 |
|      | A-7.5  | Manual Switch (MSW)                                | A-87 |
|      | A-7.6  | Relay (RLY)                                        | A-88 |
| A-8. | CONTR  | OL RODS                                            | A-89 |
|      | A-8.1  | Control Rod Drive (CRD)                            | A-89 |
|      | A-8.2  | Control Rod (ROD)                                  | A-91 |
|      | A-8.3  | Hydraulic Control Unit (HCU)                       | A-92 |
| A-9. | HEATIN | IG AND VENTILATION                                 | A-93 |

|      | A-9.1      | Damper (DMP)                                          | A-93  |
|------|------------|-------------------------------------------------------|-------|
|      | A-9.2      | Air Handling Unit (AHU)                               | A-96  |
|      | A-9.3      | Chiller (CHL)                                         | A-99  |
|      | A-9.4      | Fan (FAN)                                             | A-102 |
| A-10 | . MISCEL   | LANEOUS EQUIPMENT                                     | A-107 |
|      | A-10.1     | Air Compressor (CMP)                                  | A-107 |
|      | A-10.2     | Air Dryer Unit (ADU)                                  | A-110 |
|      | A-10.3     | Accumulator (ACC)                                     | A-111 |
|      | A-10.4     | COOLING TOWER FAN (CTF)                               | A-113 |
|      | A-10.5     | Tank (TNK)                                            | A-117 |
|      | A-10.6     | Orifice (ORF)                                         | A-120 |
|      | A-10.7     | PIPE (PIPE)                                           | A-121 |
|      | A-10.8     | Heat Exchanger (HTX)                                  | A-123 |
| A-11 | . REFERE   | NCES                                                  | A-125 |
| Appe | endix B C  | omponent/Train Unavailability Data Sheets 2020 Update | B-1   |
| B-1. | MSPI UN    | NAVAILABILITY DATA                                    | B-2   |
| В-2. | OTHER      | UNAVAILABILITY ESTIMATES                              | B-6   |
| B-3. | REFERE     | NCES                                                  | B-8   |
| Appe | endix C In | itiating Event Data Sheets 2020 Update                | C-1   |
| C-1. | PRIMAR     | RY/SECONDARY INVENTORY CONTROL                        | C-2   |
|      | C-1.1      | High Energy Line Breaks                               | C-2   |
|      | C-1.2      | Steam Generator Tube Rupture (SGTR)                   | C-7   |
|      | C-1.3      | Loss of Coolant Accidents                             | C-8   |
| C-2. | TRANSI     | ENTS                                                  | C-27  |
|      | C-2.1      | General Transient                                     | C-27  |
|      | C-2.2      | Loss of Condenser Heat Sink                           | C-29  |
|      | C-2.3      | Loss of Main Feedwater (LOMFW)                        | C-31  |
| C-3. | LOSS OI    | F SUPPORT SYSTEMS                                     | C-32  |
|      | C-3.1      | Loss of Safety-Related Cooling Water                  | C-32  |
|      | C-3.2      | LOSS OF INSTRUMENT CONTROL AIR                        | C-36  |
| C-4. | LOSS OI    | F OFFSITE POWER                                       | C-38  |
|      | C-4.1      | Loss of Offsite Power, Power Operations (LOOP.PO)     | C-38  |
|      | C-4.2      | Loss of Offsite Power, Shutdown Operations (LOOP.SD)  | C-40  |
| C-5. | ELECTR     | ICAL POWER                                            | C-40  |
|      | C-5.1      | Loss of Safety-Related AC Bus                         | C-41  |

| C-6. | REFERENCESC | -4 | 13 | ; |
|------|-------------|----|----|---|
|------|-------------|----|----|---|

# **FIGURES**

| Figure 1. AOV demands per year distribution.                                                                                 | A-3   |
|------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 2. MOV demands per year distribution                                                                                  | A-5   |
| Figure 3. HOV demands per year distribution.                                                                                 | A-8   |
| Figure 4. SOV demands per year distribution                                                                                  | A-10  |
| Figure 5. EOV demands per year distribution                                                                                  | A-12  |
| Figure 6. VBV demands per year distribution                                                                                  | A-14  |
| Figure 7. TBV demands per year distribution                                                                                  | A-16  |
| Figure 8. MSV demands per year distribution.                                                                                 | A-18  |
| Figure 9. CKV demands per year distribution                                                                                  | A-20  |
| Figure 10. XVM demands per year distribution                                                                                 | A-23  |
| Figure 11. FCV demands per year distribution.                                                                                | A-25  |
| Figure 12. a. Standby MDP demands per year distribution. b. Running/alternating MDP demands per year distribution.           | A-31  |
| Figure 13. a. Standby MDP run hours per demand distribution. b. Running/alternating<br>MDP run hours per demand distribution | A-32  |
| Figure 14. a. Standby TDP demands per year distribution. b. Running/alternating TDP demands per year distribution.           | A-35  |
| Figure 15. a. Standby TDP run hours per demand distribution. b. Running/alternating<br>TDP run hours per demand distribution | A-36  |
| Figure 16. Standby EDP demands per year distribution.                                                                        | A-39  |
| Figure 17. Standby EDP run hours per demand distribution                                                                     | A-39  |
| Figure 18. a. Standby PDP demands per year distribution. b. Running/alternating PDP demands per year distribution.           | A-42  |
| Figure 19. a. Standby PDP run hours per demand distribution. b. Running/alternating<br>PDP run hours per demand distribution | A-43  |
| Figure 20. EDG demands per year distribution                                                                                 | A-47  |
| Figure 21. EDG run hours per demand distribution.                                                                            | A-48  |
| Figure 22. ABT demands per year distribution.                                                                                | A-65  |
| Figure 23. CRB demands per year distribution.                                                                                | A-67  |
| Figure 24. DMP demands per year distribution.                                                                                | A-95  |
| Figure 25. AHU demands per year distribution.                                                                                | A-97  |
| Figure 26. AHU run hours per demand distribution                                                                             | A-98  |
| Figure 27. CHL demands per year distribution.                                                                                | A-100 |

| Figure 28. CHL run hours per demand distribution.                                                                             | A-101 |
|-------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 29. a. Standby FAN demands per year distribution. b. Running/alternating FAN demands per year distribution.            | A-104 |
| Figure 30. a. Standby FAN run hours per demand distribution. b. Running/alternating<br>FAN run hours per demand distribution. | A-105 |
| Figure 31. CMP demands per year distribution                                                                                  | A-108 |
| Figure 32. CMP run hours per demand distribution                                                                              | A-109 |
| Figure 33. a. Standby CTF demands per year distribution. b. Running/alternating CTF demands per year distribution.            | A-114 |
| Figure 34. a. Standby CTF run hours per demand distribution. b. Running/alternating<br>CTF run hours per demand distribution. | A-115 |

# TABLES

| Table 23. Selected industry distributions of p and $\lambda$ for EOVs  | A-12 |
|------------------------------------------------------------------------|------|
| Table 24. VBV systems                                                  | A-13 |
| Table 25. VBV unreliability data.                                      | A-13 |
| Table 26. Selected industry distributions of p and $\lambda$ for VBVs  | A-14 |
| Table 27. TBV systems.                                                 | A-15 |
| Table 28. TBV unreliability data                                       | A-15 |
| Table 29. Selected industry distributions of p and $\lambda$ for TBVs. | A-16 |
| Table 30. MSV systems                                                  | A-17 |
| Table 31. MSV unreliability data.                                      | A-17 |
| Table 32. Selected industry distributions of p and $\lambda$ for MSVs  | A-18 |
| Table 33. CKV systems.                                                 | A-19 |
| Table 34. CKV unreliability data.                                      | A-20 |
| Table 35. Selected industry distributions of p and $\lambda$ for CKVs  | A-21 |
| Table 36. XVM systems.                                                 | A-22 |
| Table 37. XVM unreliability data.                                      | A-23 |
| Table 38. Selected industry distributions of p and $\lambda$ for XVMs  | A-23 |
| Table 39. FCV systems.                                                 | A-24 |
| Table 40. FCV unreliability data.                                      | A-24 |
| Table 41. Selected industry distributions of p and $\lambda$ for FCVs. | A-25 |
| Table 42. Pump failure modes                                           | A-26 |
| Table 43. MDP systems                                                  | A-26 |
| Table 44. MDP unreliability data.                                      | A-27 |
| Table 45. Selected industry distributions of p and $\lambda$ for MDPs  | A-33 |
| Table 46. TDP systems.                                                 | A-34 |
| Table 47. TDP unreliability data.                                      | A-34 |
| Table 48. Selected industry distributions of p and $\lambda$ for TDPs  | A-37 |
| Table 49. EDP systems                                                  | A-38 |
| Table 50. EDP unreliability data.                                      | A-38 |
| Table 51. Selected industry distributions of p and $\lambda$ for EDPs  | A-40 |
| Table 52. PDP systems.                                                 | A-41 |
| Table 53. PDP unreliability data.                                      | A-41 |
| Table 54. Selected industry distributions of p and $\lambda$ for PDPs  | A-44 |
| Table 55. PMP systems.                                                 | A-45 |
| Table 56. PMP unreliability data                                       | A-45 |
| Table 57. Selected industry distributions of p and $\lambda$ for PMPs. | A-45 |
|                                                                        |      |

| Table 58. Generator failure modes.                                      | A-46 |
|-------------------------------------------------------------------------|------|
| Table 59. Generator component counts.                                   | A-46 |
| Table 60. EDG unreliability data                                        | A-47 |
| Table 61. Selected industry distributions of p and $\lambda$ for EDGs.  | A-48 |
| Table 62. HTG unreliability data                                        | A-49 |
| Table 63. Selected industry distributions of p and $\lambda$ for HTGs   | A-49 |
| Table 64. CTG unreliability data                                        | A-50 |
| Table 65. Selected industry distributions of p and $\lambda$ for CTGs.  | A-50 |
| Table 66. HPCS unreliability data                                       | A-51 |
| Table 67. Selected industry distributions of p and $\lambda$ for HPCSs. | A-51 |
| Table 68. SBO unreliability data.                                       | A-52 |
| Table 69. Selected industry distributions of p and $\lambda$ for SBOs   | A-52 |
| Table 70. Relief valve failure modes                                    | A-53 |
| Table 71. SRV systems                                                   | A-53 |
| Table 72. SRV unreliability data.                                       | A-53 |
| Table 73. Selected industry distributions of p and $\lambda$ for SRVs   | A-54 |
| Table 74. SVV systems.                                                  | A-55 |
| Table 75. SVV unreliability data                                        | A-55 |
| Table 76. Selected industry distributions of p and $\lambda$ for SVVs   | A-56 |
| Table 77. PORV systems                                                  | A-57 |
| Table 78. PORV unreliability data.                                      | A-57 |
| Table 79. Selected industry distributions of p and $\lambda$ for PORVs  | A-58 |
| Table 80. RVL systems                                                   | A-59 |
| Table 81. RVL unreliability data                                        | A-59 |
| Table 82. Selected industry distributions of p and $\lambda$ for RVLs.  | A-60 |
| Table 83. Electrical equipment failure modes.                           | A-61 |
| Table 84. BCH systems.                                                  | A-61 |
| Table 85. BCH unreliability data                                        | A-61 |
| Table 86. Selected industry distributions of p and $\lambda$ for BCHs.  | A-62 |
| Table 87. BAT systems.                                                  | A-63 |
| Table 88. BAT unreliability data                                        | A-63 |
| Table 89. Selected industry distributions of p and $\lambda$ for BATs.  | A-63 |
| Table 90. ABT systems.                                                  | A-64 |
| Table 91. ABT unreliability data                                        | A-64 |
| Table 92. Selected industry distributions of p and $\lambda$ for ABTs.  | A-65 |
|                                                                         |      |

| Table 93. CRB systems.                                                   | A-66 |
|--------------------------------------------------------------------------|------|
| Table 94. CRB unreliability data                                         | A-66 |
| Table 95. Selected industry distributions of p and $\lambda$ for CRBs    | A-67 |
| Table 96. INV systems.                                                   | A-69 |
| Table 97. INV unreliability data                                         | A-69 |
| Table 98. Selected industry distributions of p and $\lambda$ for INVs.   | A-69 |
| Table 99. BUS systems.                                                   | A-70 |
| Table 100. BUS unreliability data.                                       | A-70 |
| Table 101. Selected industry distributions of p and $\lambda$ for BUSs   | A-70 |
| Table 102. MCC systems.                                                  | A-71 |
| Table 103. MCC unreliability data.                                       | A-71 |
| Table 104. Selected industry distributions of p and $\lambda$ for MCCs.  | A-71 |
| Table 105. TFM systems.                                                  | A-72 |
| Table 106. TFM unreliability data                                        | A-72 |
| Table 107. Selected industry distributions of p and $\lambda$ for TFMs   | A-72 |
| Table 108. SEQ unreliability data.                                       | A-73 |
| Table 109. Selected industry distributions of p and $\lambda$ for SEQs   | A-73 |
| Table 110. FUS systems.                                                  | A-74 |
| Table 111. FUS unreliability data.                                       | A-74 |
| Table 112. Selected industry distributions of p and $\lambda$ for FUS    | A-75 |
| Table 113. Strainer failure modes.                                       | A-76 |
| Table 114. Strainer systems and component counts                         | A-76 |
| Table 115. FLT unreliability data                                        | A-77 |
| Table 116. Selected industry distributions of p and $\lambda$ for FLTs   | A-78 |
| Table 117. FLTSC unreliability data                                      | A-79 |
| Table 118. Selected industry distributions of p and $\lambda$ for FLTSCs | A-79 |
| Table 119. SMP unreliability data                                        | A-80 |
| Table 120. Selected industry distributions of p and $\lambda$ for SMPs   | A-80 |
| Table 121. TSA unreliability data.                                       | A-81 |
| Table 122. Selected industry distributions of p and $\lambda$ for TSAs   | A-81 |
| Table 123. TRK unreliability data                                        | A-82 |
| Table 124. Selected industry distributions of p and $\lambda$ for TRKs   | A-82 |
| Table 125. Reactor protection equipment failure modes                    | A-83 |
| Table 126. BIS unreliability data                                        | A-83 |
| Table 127. Selected industry distributions of p and $\lambda$ for BISs   | A-83 |

| Table 128. Process logic component unreliability data                                      | A-84  |
|--------------------------------------------------------------------------------------------|-------|
| Table 129. Selected industry distributions of p and $\lambda$ for process logic components | A-84  |
| Table 130. Sensor/transmitter unreliability data                                           | A-85  |
| Table 131. Selected industry distributions of p and $\lambda$ for sensor/transmitters      | A-85  |
| Table 132. RTB failure modes.                                                              | A-86  |
| Table 133. RTB unreliability data.                                                         | A-86  |
| Table 134. Selected industry distributions of p and $\lambda$ for RTBs                     | A-86  |
| Table 135. MSW unreliability data.                                                         | A-87  |
| Table 136. Selected industry distributions of p and $\lambda$ for MSWs                     | A-87  |
| Table 137. RLY unreliability data                                                          | A-88  |
| Table 138. Selected industry distributions of p and $\lambda$ for RLYs.                    | A-88  |
| Table 139. ROD equipment failure modes                                                     | A-89  |
| Table 140. Control rod systems                                                             | A-89  |
| Table 141. CRD unreliability data                                                          | A-89  |
| Table 142. Selected industry distributions of p and $\lambda$ for CRDs.                    | A-90  |
| Table 143. ROD unreliability data.                                                         | A-91  |
| Table 144. Selected industry distributions of p and $\lambda$ for RODs                     | A-91  |
| Table 145. HCU unreliability data.                                                         | A-92  |
| Table 146. Selected industry distributions of p and $\lambda$ for HCUs                     | A-92  |
| Table 147. Heating and ventilation equipment failure modes                                 | A-93  |
| Table 148. Damper systems.                                                                 | A-93  |
| Table 149. DMP unreliability data.                                                         | A-94  |
| Table 150. Selected industry distributions of p and $\lambda$ for DMPs                     | A-95  |
| Table 151. AHU systems                                                                     | A-96  |
| Table 152. AHU unreliability data.                                                         | A-97  |
| Table 153. Selected industry distributions of p and $\lambda$ for AHUs                     | A-98  |
| Table 154. CHL systems.                                                                    | A-99  |
| Table 155. CHL unreliability data                                                          | A-100 |
| Table 156. Selected industry distributions of p and $\lambda$ for CHLs.                    | A-101 |
| Table 157. FAN systems.                                                                    | A-102 |
| Table 158. FAN unreliability data                                                          | A-103 |
| Table 159. Selected industry distributions of p and $\lambda$ for FANs                     | A-106 |
| Table 160. Failure modes applicable to miscellaneous equipment.                            | A-107 |
| Table 161. CMP systems.                                                                    | A-107 |
| Table 162. CMP unreliability data.                                                         | A-108 |
|                                                                                            |       |

| Table 163. Selected industry distributions of p and $\lambda$ for CMPs  | A-109 |
|-------------------------------------------------------------------------|-------|
| Table 164. Selected industry distributions of p and $\lambda$ for ADUs  | A-110 |
| Table 165. ACC systems.                                                 | A-111 |
| Table 166. ACC unreliability data                                       | A-112 |
| Table 167. Selected industry distributions of p and $\lambda$ for ACCs  | A-112 |
| Table 168. CTF systems.                                                 | A-113 |
| Table 169. CTF unreliability data.                                      | A-113 |
| Table 170. Selected industry distributions of p and $\lambda$ for CTFs  | A-116 |
| Table 171. TNK systems.                                                 | A-117 |
| Table 172. TNK unreliability data                                       | A-118 |
| Table 173. Selected industry distributions of p and $\lambda$ for TNKs  | A-118 |
| Table 174. Selected industry distributions of p and $\lambda$ for ORFs  | A-120 |
| Table 175. PIPE systems.                                                | A-121 |
| Table 176. PIPE unreliability data                                      | A-122 |
| Table 177. Selected industry distributions of $\lambda$ for PIPEs       | A-122 |
| Table 178. HTX failure modes                                            | A-123 |
| Table 179. HTX systems.                                                 | A-123 |
| Table 180. HTX unreliability data                                       | A-124 |
| Table 181. Selected industry distributions of p and $\lambda$ for HTXs  | A-124 |
| Table 182. MSPI unavailability data and fitted distributions            | B-2   |
| Table 183. Other source unavailability estimates                        | B-6   |
| Table 184. FWLB (BWR) frequency data for baseline period                | C-2   |
| Table 185. Selected industry distribution of $\lambda$ for FWLB (BWR).  | C-2   |
| Table 186. FWLB (PWR) frequency data for baseline period.               | C-3   |
| Table 187. Selected industry distribution of $\lambda$ for FWLB (PWR)   | C-3   |
| Table 188. SLBIC (PWR) frequency data for baseline period               | C-4   |
| Table 189. Selected industry distribution of $\lambda$ for SLBIC (PWR). | C-4   |
| Table 190. SLBOC (BWR) frequency data for baseline period               | C-5   |
| Table 191. Selected industry distribution of $\lambda$ for SLBOC (BWR). | C-5   |
| Table 192. SLBOC (PWR) frequency data for baseline period.              | C-6   |
| Table 193. Selected industry distribution of $\lambda$ for SLBOC (PWR)  | C-6   |
| Table 194. STGR frequency data for baseline period.                     | C-7   |
| Table 195. Selected industry distribution of $\lambda$ for SGTR         | C-7   |
| Table 196. LLOCA (BWR) frequency data for baseline period.              | C-9   |
| Table 197. Selected industry distribution of $\lambda$ for LLOCA (BWR)  | C-9   |

| $\mathbf{T}_{\mathbf{r}} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 198. LLOCA (PWR) frequency data for baseline period.       C-10         Table 100. Solution 11 of the first of the  |
| Table 199. Selected industry distribution of $\lambda$ for LLOCA (PWR)C-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 200. MLOCA (BWR) frequency data for baseline period.       C-11         Table 201. School bit is the state of the s |
| Table 201. Selected industry distribution of $\lambda$ for MLOCA (BWR)C-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 202. MLOCA (PWR) frequency data for baseline periodC-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 203. Selected industry distribution of $\lambda$ for MLOCA (PWR)C-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 204. SLOCA (BWR) frequency data for baseline period.    C-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 205. Selected industry distribution of $\lambda$ for SLOCA (BWR)C-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Table 206. SLOCA (PWR) frequency data for baseline period.    C-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 207. Selected industry distribution of λ for SLOCA (PWR)C-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 208. VSLOCA (BWR) frequency data for baseline period.    C-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 209. Selected industry distribution of $\lambda$ for VSLOCA (BWR)C-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 210. VSLOCA (PWR) frequency data for baseline period.    C-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 211. Selected industry distribution of $\lambda$ for VSLOCA (PWR)C-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 212. SORV (BWR) frequency data for baseline period.    C-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 213. Selected industry distribution of $\lambda$ for SORV (BWR)C-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 214. SORV (PWR) frequency data for baseline period.    C-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 215. Selected industry distribution of $\lambda$ for SORV (PWR)C-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 216. ISLOCA (BWR) frequency data for baseline period.    C-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 217. Selected industry distribution of $\lambda$ for ISLOCA (BWR)C-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 218. ISLOCA (PWR) frequency data for baseline periodC-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Table 219. Selected industry distribution of $\lambda$ for ISLOCA (PWR)C-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 220. RCPLOCA frequency data for baseline period.    C-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Table 221. Selected industry distribution of $\lambda$ for RCPLOCAC-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 222. Selected industry distribution of $\lambda$ for XLOCAC-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Table 223. TRANS (BWR) frequency data for baseline period.    C-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 224. Selected industry distribution of λ for TRANS (BWR)C-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 225. TRANS (PWR) frequency data for baseline period.    C-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 226. Selected industry distribution of λ for TRANS (PWR)C-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 227. LOCHS (BWR) frequency data for baseline period.    C-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 228. Selected industry distribution of λ for LOCHS (BWR)C-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 229. LOCHS (PWR) frequency data for baseline period.    C-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 230. Selected industry distribution of λ for LOCHS (PWR)C-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table 231. LOMFW frequency data for baseline periodC-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 232. Selected industry distribution of λ for LOMFWC-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Table 233. LOESW frequency data                                        | C-32 |
|------------------------------------------------------------------------|------|
| Table 234. Selected industry distribution of $\lambda$ for LOESW.      | C-32 |
| Table 235. PLOESW frequency data for baseline period                   | C-33 |
| Table 236. Selected industry distribution of $\lambda$ for PLOESW.     | C-33 |
| Table 237. LOCCW frequency data                                        | C-34 |
| Table 238. Selected industry distribution of $\lambda$ for LOCCW       | C-34 |
| Table 239. PLOCCW frequency data for baseline period                   | C-35 |
| Table 240. Selected industry distribution of $\lambda$ for PLOCCW.     | C-35 |
| Table 241. LOIA (BWR) frequency data for baseline period.              | C-36 |
| Table 242. Selected industry distribution of $\lambda$ for LOIA (BWR)  | C-36 |
| Table 243. LOIA (PWR) frequency data for baseline period               | C-37 |
| Table 244. Selected industry distribution of $\lambda$ for LOIA (PWR). | C-37 |
| Table 245. LOOP frequency data for baseline period                     | C-38 |
| Table 246. Selected industry distributions of $\lambda$ for LOOP.      | C-38 |
| Table 247. LOOP.SD frequency data for baseline period                  | C-40 |
| Table 248. Selected industry distributions of $\lambda$ for LOOP.SD.   | C-40 |
| Table 249. LOAC frequency data for baseline period                     | C-41 |
| Table 250. Selected industry distribution of $\lambda$ for LOAC.       | C-41 |
| Table 251. LODC frequency data for baseline period                     | C-42 |
| Table 252. Selected industry distribution of $\lambda$ for LODC.       | C-42 |

| ABT   | automatic bus transfer switch              |
|-------|--------------------------------------------|
| ACC   | accumulator                                |
| ACP   | ac power                                   |
| ADAMS | Agency Document Access & Management System |
| ADU   | air dryer unit                             |
| AFW   | auxiliary feedwater                        |
| AFWS  | auxiliary feedwater system                 |
| AHU   | air handling unit                          |
| AOV   | air-operated valve                         |
| ASME  | American Society of Mechanical Engineers   |
| ASP   | accident sequence precursor                |
| BAT   | battery                                    |
| BIS   | bistable                                   |
| BME   | breaker mechanical                         |
| BSN   | breaker shunt trip                         |
| BUS   | bus (electrical)                           |
| BUV   | breaker undervoltage trip                  |
| BWR   | boiling water reactor                      |
| CCF   | common-cause failure                       |
| ССР   | channel calculator for pressure            |
| CCW   | component cooling water                    |
| CDS   | condensate system                          |
| CHL   | chiller                                    |
| CHW   | chilled water system                       |
| CIS   | containment isolation system               |
| CKV   | check valve                                |
| CLN   | clean                                      |
| CNID  | constrained noninformative distribution    |
| CRB   | circuit breaker                            |
| CRD   | control rod drive                          |
| CSR   | containment spray recirculation            |
| CST   | condensate storage tank                    |
| CTF   | cooling tower fan                          |
|       |                                            |

# ACRONYMS

| CTG    | combustion turbine generator                   |
|--------|------------------------------------------------|
| CTS    | condensate transfer system                     |
| CVC    | chemical and volume control                    |
| DCP    | dc power                                       |
| DDP    | diesel-driven pump                             |
| EB     | empirical Bayes                                |
| EDG    | emergency diesel generator                     |
| EDP    | engine-driven pump                             |
| EE     | expert elicitation                             |
| ELL    | external leak, large                           |
| ELS    | external leak, small                           |
| EOV    | explosive-operated valve                       |
| EPIX   | Equipment Performance and Information Exchange |
| EPRI   | Electric Power Research Institute              |
| EPS    | emergency power system                         |
| ESW    | emergency or essential service water           |
| FAN    | fan                                            |
| FC     | fail to control                                |
| FCV    | flow-control valve                             |
| FLT    | filter                                         |
| FTC    | fail to close                                  |
| FTCL   | fail to close after passing liquid             |
| FTFR   | failure to transfer                            |
| FTLR   | fail to load and run                           |
| FTO    | fail to open                                   |
| FTOC   | fail to open or close                          |
| FTOP   | fail to operate                                |
| FTR    | fail to run                                    |
| FTR>1H | fail to run after 1 hour of operation          |
| FTR≤1H | fail to run for 1 hour of operation            |
| FTS    | fail to start                                  |
| FWS    | feedwater system                               |
| HCI    | high-pressure coolant injection                |
| HDR    | header                                         |
| HOV    | hydraulic-operated valve                       |
|        |                                                |

| HPCI  | high-pressure coolant injection            |
|-------|--------------------------------------------|
| HPCS  | high-pressure core spray                   |
| HPI   | high-pressure safety injection             |
| HPSI  | high-pressure safety injection             |
| HTG   | hydro-turbine generator                    |
| HTX   | heat exchanger                             |
| HVC   | heating, ventilating, and air conditioning |
| IAS   | instrument air system                      |
| IC    | isolation condenser                        |
| ICS   | ice condenser                              |
| ILL   | internal leak large                        |
| ILS   | internal leak small                        |
| INL   | Idaho National Laboratory                  |
| INPO  | Institute of Nuclear Power Operations      |
| INV   | inverter                                   |
| ISO   | isolation condenser                        |
| JNID  | Jefferies non-informative distribution     |
| LCI   | low-pressure coolant injection             |
| LCS   | low-pressure core spray                    |
| LER   | licensee event report                      |
| LLOCA | large loss-of-coolant accident             |
| LOAC  | loss of ac bus                             |
| LOCA  | loss-of-coolant accident                   |
| LOCCW | loss of component cooling water            |
| LOCHS | loss of condenser heat sink                |
| LODC  | loss of dc bus                             |
| LOIA  | loss of instrument air                     |
| LOMFW | loss of main feedwater                     |
| LOOP  | loss of offsite power                      |
| LOSWS | loss of service water system               |
| LPI   | low-pressure injection                     |
| LPSI  | low-pressure safety injection              |
| MDC   | motor-driven compressor                    |
| MDP   | motor-driven pump                          |
| MFW   | main feedwater                             |
|       |                                            |

| MLE     | maximum likelihood estimate                                    |
|---------|----------------------------------------------------------------|
| MLOCA   | medium loss-of-coolant accident                                |
| MOOS    | maintenance-out-of-service                                     |
| MOV     | motor-operated valve                                           |
| MSPI    | Mitigating Systems Performance Index                           |
| MSS     | main steam system                                              |
| MSW     | manual switch                                                  |
| NPP     | nuclear power plant                                            |
| NPRDS   | Nuclear Plant Reliability Database System                      |
| NRC     | U.S. Nuclear Regulatory Commission                             |
| NREP    | National Reliability Evaluation Program                        |
| NSW     | nuclear or normal service water                                |
| NUCLARR | Nuclear Computerized Library for Assessing Reactor Reliability |
| OEP     | offsite electrical power                                       |
| ORF     | orifice                                                        |
| PDP     | positive displacement pump                                     |
| PLDT    | process logic delta temperature                                |
| PLF     | process logic flow                                             |
| PLG     | plug                                                           |
| PLL     | process logic level                                            |
| PLOCCW  | partial loss of component cooling water                        |
| PLOSWS  | partial loss of service water system                           |
| PLP     | process logic pressure                                         |
| PMP     | pump volute                                                    |
| POD     | pneumatic-operated damper                                      |
| PORV    | power-operated relief valve                                    |
| PRA     | probabilistic risk assessment                                  |
| PWR     | pressurized water reactor                                      |
| PWROG   | Pressurized Water Reactor Owners Group                         |
| RADS    | Reliability and Availability Database System                   |
| RCI     | reactor core isolation cooling                                 |
| RCIC    | reactor core isolation cooling                                 |
| rcry    | reactor critical year                                          |
| RCS     | reactor coolant system                                         |
| rcy     | reactor calendar year                                          |

| RHR   | residual heat removal                              |
|-------|----------------------------------------------------|
| RLY   | relay                                              |
| ROP   | Reactor Oversight Process                          |
| RPS   | reactor protection system                          |
| RPV   | reactor pressure vessel                            |
| RRS   | reactor recirculation system                       |
| rsy   | reactor shutdown year                              |
| RTB   | reactor trip breaker                               |
| RUN   | running or alternating                             |
| SBO   | station blackout                                   |
| SCNID | simplified constrained noninformative distribution |
| SD    | standard deviation                                 |
| SDP   | Significance Determination Process                 |
| SEQ   | sequencer                                          |
| SGTR  | steam generator tube rupture                       |
| SLC   | standby liquid control                             |
| SLOCA | small loss-of-coolant accident                     |
| SMP   | sump                                               |
| SOP   | spurious operation                                 |
| SORV  | stuck open relief valve                            |
| SOV   | solenoid-operated valve                            |
| SPAR  | standardized plant analysis risk                   |
| SRV   | safety relief valve                                |
| SSU   | safety system unavailability                       |
| STF   | sensor/transmitter flow                            |
| STL   | sensor/transmitter level                           |
| STP   | sensor/transmitter pressure                        |
| STR   | strainer                                           |
| STT   | sensor/transmitter temperature                     |
| SUC   | suction                                            |
| SWS   | service water system                               |
| TDP   | turbine-driven pump                                |
| TFM   | transformer                                        |
| TM    | test or maintenance                                |
| TNK   | tank                                               |

| TRAN   | transient                           |
|--------|-------------------------------------|
| TSA    | traveling screen assembly           |
| UA     | unavailability                      |
| UR     | unreliability                       |
| VBV    | vacuum breaker valve                |
| VSLOCA | very small loss-of-coolant accident |
| VSS    | vapor suppression system            |
| XVM    | manual valve                        |

# Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants: 2020 Update

### 1. INTRODUCTION

### 1.1 Background

The U.S. Nuclear Regulatory Commission (NRC) maintains a set of risk models for the operating U.S. commercial nuclear power plants (NPPs), termed the "industry" in this report [1]. These standardized plant analysis risk (SPAR) models are used by the NRC on a day-to-day basis to support risk-informed decision-making. In addition to supporting accident sequence precursor analyses, the SPAR models also support the Significance Determination Process and are used to confirm licensee risk analyses submitted in support of license amendment requests. Therefore, it is important that the SPAR models reflect current plant performance. This report documents the quantitative results of the current industry-average performance for components and initiating events (IEs) at U.S. commercial NPPs. It represents the third update of the original analysis in NUREG/CR-6928 [2] with data through 2020. Continuous characterization and updating of current industry-average performance with the latest industry data available are important steps in maintaining up-to-date risk models. Typically, data for 1998–2002 were used in NUREG/CR-6928, data for 1998–2010 in the first update [3–6], data for 1998–2015 in the second update [7–9], and data for 2006–2020 in this update although many IEs required longer periods for adequate characterization of frequencies in all these analyses. The parameter estimation results are used as inputs to the U.S. NRC SPAR models covering U.S. commercial NPPs.

As with NUREG/CR-6928 and previous updates, four types of risk model events are covered in this report: component unreliability (UR), component or train unavailability (UA), system special event probabilities, and IE frequencies. Each is discussed below:

- 1. Component UR includes events such as a pump that fails to start (FTS) or fails to run (FTR), valve fail to open or close (FTOC), and electrical component fail to operate (FTOP). Failure modes are characterized by beta distributions for failure upon demand events and gamma distributions for failure to run and other events.
- 2. Component/train UA is the probability that a component or train is unavailable to perform its safety function because of test or maintenance (TM) outages. Component or train UAs are characterized by beta distributions in NUREG/CR-6928 and by normal distribution since the 2015 update.
- 3. System special event probabilities address operational issues that might occur during actual unplanned demands. Examples include a pump having to restart (following the initial start) during its response to an unplanned demand, injection valves having to reopen (after the initial opening), and the automatic transfer of an injection system from its tank source to its recirculation source. Typical component UR values obtained mainly from test demands may not be applicable to these special events, so these are covered separately. System special event probabilities are generally characterized by beta distributions.
- 4. IEs are plant upset conditions that result in a plant trip. In addition, certain IEs also result in functional impacts on safety systems that may be used to transition the plant to a stable shutdown state. IE frequencies in this report are appropriate for plant critical operation and are reported as events per reactor critical year (rcry). Note, however, that IEs for shutdown operation are not covered in this report. The IE frequencies are characterized by gamma distributions.

This report documents the updated quantitative results of the above risk model events with data through 2020. A comparison with the results in NUREG/CR-6928 and previous updates is provided for selected events. The appendices of the report present more detailed information and results. However, the original NUREG/CR-6928 report should be referred for the philosophy that is used to guide the effort to update the inputs for SPAR and the comparisons with historical data such as those in NUREG-1150 [10,11] and individual plant examinations (IPEs) [12]. NUREG/CR-6823 [13] can be referenced for the methodologies that are used to estimate various parameters for probabilistic risk assessment (PRA).

### 1.2 Evolution of the Updates since NUREG/CR-6928

#### 1.2.1 Prior Updates Before This One

There were two major updates in the reliability data analysis since the original issue of NUREG/CR-6928: the first update was published in September 2012 and generally contained data from 1998–2010, the second update was published in December 2016 and generally contained data from 1998–2015. The detailed results of these updates can be obtained through the NRC Reactor Operational Experience Results and Databases web page for industry average parameter estimates: https://nrcoe.inl.gov/. There have been several major enhancements to the collection and analysis of reliability data in previous updates that are different from those in NUREG/CR-6928. The following is a summary of those changes:

- Most of the reliability results, included those presented herein, are taken directly from the Reliability and Availability Data System (RADS)<sup>1</sup>, https://rads.inl.gov/ [14]. The Institute for Nuclear Power Operation (INPO) Industry Reporting and Information System (IRIS), formerly the INPO Consolidated Events System (ICES) and the Equipment Performance Information Exchange (EPIX), data loaded into RADS has undergone significant review and scrutiny by the staff at the Idaho National Laboratory (INL) to prepare the data to be useful in PRAs. Most IRIS failure data are being updated to reflect the results of the data collection and coding taken at INL. In addition, the demand and run-hour data have been scrutinized before data load to remove or correct suspect data entries.
- 2. The overall performance of RADS has undergone extensive verification and validation. RADS performs database searches for component failure data. These searches have been independently verified to be accurate for all combinations of search criteria.
- 3. NUREG/CR-6928 introduced the concepts of high- and low-demand components, as well as standby and normally running equipment. Off-line analysis of data was required to produce segregated results for these component partitions. Currently, the identification of high- and low-demand components, as well as standby and normally running equipment, is taken care of before data are loaded into RADS.

Multiple component and failure mode combinations that were not reported in the original NUREG/CR-6928 have been added since to support SPAR model data needs.

Several minor changes to the component reliability data sheets were made to enhance readability and simplify the product:

1. The tables from each section that compare the maximum likelihood estimators (MLE) and various methods of estimating uncertainty (e.g., using component, plant, or industry level data in analyses) have been removed. Most readers were confused as to which of many possible estimates for reliability were valid and the estimates based on component level data for component variability were never used in parameter estimations in NUREG/CR-6928 other than listed in those tables.

<sup>&</sup>lt;sup>1</sup> NRC RADS uses data from the INPO IRIS and is only accessible by INPO members under a memorandum between INPO and the NRC.

- 2. In many places, the text reiterated what was obvious in the figure or the table or described the selection of low-demand data, so that text has been removed.
- 3. The selected industry distribution table showing the rounded results has been removed. The user may round the data to suit specific needs.
- 4. The subsections entitled "Breakdown by System" generally provided limited results for systems. Because use of these results without further analysis is problematic, the subsections were deleted.
- 5. Many results (e.g., leakage, spurious operation) depend on an exposure time that is independent of whether the plant is critical or shutdown. Previously, no allowance was made for whether the plant was operational; now the exposure time is based on reactor years.
- 6. The first column in the tables has been changed from "Operation" to "Pooling Group." The pooling group indicates whether any additional refinements ("All" means no refinements) were made to the data search beyond what was discussed in the introduction.

The following statistical adjustments to data in the original NUREG/CR-6928 have been modified :

- 1. The use of the simplified constrained non-informative distribution (SCNID), which is a simplified version of the constrained non-informative distribution (CNID), has been discontinued. The Jefferies non-informative distribution (JNID) replaces that distribution. The SCNID had the property of producing a result with a highly uncertain distribution, which was intended to enhance the use of the reliability results as the Bayesian prior to a plant-specific update. The primary use of these results is to support SPAR, but the use of highly uncertain distributions lead to excessive uncertainty in the final core damage frequency.
- 2. A decision was made such that, when the empirical Bayes (EB) analysis (refer to NUREG/CR-6823 [13] for the EB analysis and other methodologies used in nuclear industry parameter estimation) produced a result that have a low (<0.3) alpha parameter to the beta or gamma distribution, then the  $\alpha$  parameter would be reset to 0.3 and the  $\beta$  parameter was recalculated based on the same mean value and the revised  $\alpha$  parameter. This action was motivated because the EB could produce extremely wide distributions that did not appear credible. This approach has been replaced by an alternative method of obtaining a reasonable distribution. The decision point is now whether the difference between the 5th percentile and the mean is greater than 4 orders of magnitude (this approximates the decision point of  $\alpha$  <0.3). When the decision point is reached, instead of creating an arbitrary distribution, the Jeffries distribution is used, which is the same decision that is made when the EB does not return a result.
- 3. The abbreviations used to describe the distributions in this update are the EB-plant level-Kass-Steffey (EB/PL/KS) and the Jeffries non-informative distribution at the industry level (JNID/IL).

#### 1.2.2 Additional Updates in This Edition

This third update of NUREG/CR-6928 generally uses data from 2006–2020. The main changes in this update are as follows:

- 1. This update covers data from January 1, 2006 to December 31, 2020, the most recent 15-year period in which the data are available. This differs from previous updates, in which January 1, 1998 was used as the starting date (e.g., January 1, 1998 to December 31, 2015 for the 2015 update, January 1, 1998 to December 31, 2010 for the 2010 update). The new date range (i.e., the latest 15-year period) was selected for this update so that the data analysis results could reflect the most recent industry performance yet still provide sufficient data.
- 2. This update puts the component UR, component or train UA, system special events, and IE-frequency data-analysis results (including the data, parameter estimates, and the detailed data sheets) together in one report to facilitate easier usage by analysts.

- 3. The results from an updated relief valve study are used for relief valves (including safety valves, safety relief valves, and power-operated relief valves) fail-to-open and fail-to-reclose failure modes. The updated relief valve study is an update of the previous study on relief valve performance as documented in NUREG/CR-7037 which used data through 2007 only [15]. Unlike NUREG/CR-7037 that used both test data and actual demand data in the analysis, this updated study uses only actual demands so as to better represent the actual in-situ valve performance.
- 4. The typos, errors, and issues identified by the industry and NRC/INL analysts since the publication of the 2015 update were resolved in this update. Nonetheless, we recognize that there are still a few issues extant in our data analysis efforts. We will work with the industry to get these issues addressed commensurate with their importance as well as the available resources.
- 5. The Pressurized Water Reactor Owners Group (PWROG) provided the staff with comments and concerns regarding aspects of the NRC long-term operating experience data analysis program in their transmittal, "Component Reliability Data Issues for Discussion with NRC Research (PWROG-18029-NP, Rev. 1" dated August 2020 (Agency Document Access & Management System [ADAMS] Accession No. ML20279A597) [16]. The staff responses to the industry concerns are contained in the enclosure (ML21242A031) to the letter from NRC to the PWROG, Subject: Transmittal of NRC Responses to PWROG Data Issues (ML21242A030), dated August 31, 2021 [17]. In a number of instances the staff agrees with the comments and has made changes to aspects of the data analysis program, which take effect with this edition.

### **1.3 Report Organization**

Sections 1 through 5 present specific results for component UR, component or train UA, system special event probabilities, and IE frequencies, respectively. Section 6 compares the data and results in this update with those in the 2015 update. Section 7 lists the references. In addition, there are three appendices providing additional detail concerning component UR (Appendix A), component or train UA (Appendix B), and IE frequencies (Appendix C).

### 2. COMPONENT UNRELIABILITY

This section represents the third update to the original set of component UR data and results documented in NUREG/CR-6928. The original set of component availability data sheets were extracted from NUREG/CR-6928 and generally contained data from the date range 2002–2004. The first update to NUREG/CR-6928 generally represents component availability results using a date range 1998–2010 and is often called the 2010 update. The second update generally represents component availability results using a date range 2002–2015 and is often called the 2015 update. This update generally represents component availability results using a date range 2002–2015 and is often called the 2015 update. This update generally represents component availability results using a date range 2002–2015 and is often called the 2015 update. This update generally represents component availability results using a date range 2006–2020.

Component UR data and resulting failure probability or rate distributions are summarized in Table 1. More detailed information for each component is presented in Appendix A, "Component Unreliability Data Sheets." IRIS data (obtained through RADS) from 2006–2020 provide the basis for most component type and failure mode combinations. System studies (SSs) covering reactor protection systems (RPSs) [18–21] and the Westinghouse Savannah River Company (WSRC) database [22] that provided historic data (late 1980s and early 1990s) and estimates for a specific component type and failure mode combinations in the original NUREG/CR-6928 were also included for completeness andto provide the basis for those component type and failure mode combinations.

### Table 1. Component UR data and results.

|          |                                  | Component Failure   |                                                               |               | Data     |                  |        |            | Industry-average Failure Probability or Rate Distribution (note a) |                  |          |          |          |          |        |           |                          |            |  |
|----------|----------------------------------|---------------------|---------------------------------------------------------------|---------------|----------|------------------|--------|------------|--------------------------------------------------------------------|------------------|----------|----------|----------|----------|--------|-----------|--------------------------|------------|--|
| Grouping | Component Type                   | Mode                | Description                                                   | Data Source   | Failures | Demands or Hours | d or h | Components | Distribution                                                       | Analysis<br>Type | 5th      | Median   | Mean     | 95th     | α      | β         | Error Factor<br>(note b) | Date Range |  |
|          |                                  | AOV-FTO             | Air-Operated Valve Fails To Open                              | EPIX/RADS     | 50       | 165,942          | d      | 1755       | Beta                                                               | JNID/IL          | 2.37E-04 | 3.02E-04 | 3.04E-04 | 3.78E-04 | 50.500 | 1.660E+05 | 1.3                      | 20062020   |  |
|          |                                  | AOV-FTC             | Air-Operated Valve Fails To Close                             | EPIX/RADS     | 27       | 165,942          | d      | 1755       | Beta                                                               | EB/PL/KS         | 2.30E-06 | 1.04E-04 | 1.89E-04 | 6.64E-04 | 0.638  | 3.380E+03 | 6.4                      | 20062020   |  |
|          |                                  | AOV-FTOC            | Air-Operated Valve Fails To Open/Close                        | EPIX/RADS     | 83       | 165,942          | d      | 1755       | Beta                                                               | EB/PL/KS         | 1.73E-05 | 3.57E-04 | 5.58E-04 | 1.78E-03 | 0.832  | 1.490E+03 | 5.0                      | 20062020   |  |
|          |                                  | AOV-FC              | Air-Operated Valve Fails To Control                           | EPIX/RADS     | 167      | 1,109,287,000    | h      | 8788       | Gamma                                                              | EB/PL/KS         | 1.50E-08 | 1.32E-07 | 1.75E-07 | 4.86E-07 | 1.260  | 7.170E+06 | 3.7                      | 20062020   |  |
|          |                                  | AOV-SOP             | Air-Operated Valve Spurious Operation                         | EPIX/RADS     | 61       | 1,109,287,000    | h      | 8788       | Gamma                                                              | EB/PL/KS         | 1.99E-09 | 3.79E-08 | 5.83E-08 | 1.85E-07 | 0.859  | 1.470E+07 | 4.9                      | 20062020   |  |
|          | Air-Operated Valve               | AOV-ILS             | Air-Operated Valve Internal Leakage (Small)                   | EPIX/RADS     | 35       | 1,109,287,000    | h      | 8788       | Gamma                                                              | JNID/IL          | 2.37E-08 | 3.17E-08 | 3.20E-08 | 4.13E-08 | 35.500 | 1.110E+09 | 1.3                      | 20062020   |  |
|          | (AOV)                            | AOV-ILL             | Air-Operated Valve Internal Leakage (Rupture)                 | NUREG/CR-6928 | (note c) |                  | h      | 8788       | Gamma                                                              | JNID/IL          | 6.85E-14 | 1.56E-10 | 6.40E-10 | 2.93E-09 | 0.300  | 4.688E+08 | 18.8                     | 20062020   |  |
|          |                                  | AOV-ELS             | Air-Operated Valve External Leakage<br>(Small)                | EPIX/RADS     | 35       | 1,109,287,000    | h      | 8788       | Gamma                                                              | EB/PL/KS         | 2.67E-10 | 1.75E-08 | 3.43E-08 | 1.25E-07 | 0.575  | 1.680E+07 | 7.2                      | 20062020   |  |
|          |                                  | AOV-ELL             | Air-Operated Valve External Leakage<br>(Rupture)              | NUREG/CR-6928 | (note c) |                  | h      | 8788       | Gamma                                                              | EB/PL/KS         | 2.57E-13 | 5.85E-10 | 2.40E-09 | 1.10E-08 | 0.300  | 1.249E+08 | 18.8                     | 20062020   |  |
|          |                                  | AOV-SOP-CCW         | Component Cooling Water AOV Spurious<br>Operation             | EPIX/RADS     | 10       | 144,615,200      | h      | 1164       | Gamma                                                              | JNID/IL          | 4.00E-08 | 7.01E-08 | 7.26E-08 | 1.13E-07 | 10.500 | 1.450E+08 | 1.6                      | 20062020   |  |
|          |                                  | AOV-SOP-IAS         | Instrument Air System AOV Spurious<br>Operation               | EPIX/RADS     | 0        | 6,218,450        | h      | 50         | Gamma                                                              | JNID/IL          | 3.16E-10 | 3.66E-08 | 8.04E-08 | 3.09E-07 | 0.500  | 6.220E+06 | 8.4                      | 20062020   |  |
|          |                                  | MOV-FTO             | Motor-Operated Valve Fails To Open                            | EPIX/RADS     | 190      | 593,626          | d      | 7120       | Beta                                                               | EB/PL/KS         | 7.80E-05 | 2.99E-04 | 3.43E-04 | 7.62E-04 | 2.480  | 7.220E+03 | 2.6                      | 20062020   |  |
|          |                                  | MOV-FTC             | Motor-Operated Valve Fails To Close                           | EPIX/RADS     | 123      | 593,626          | d      | 7120       | Beta                                                               | EB/PL/KS         | 1.09E-05 | 1.56E-04 | 2.28E-04 | 6.90E-04 | 0.972  | 4.260E+03 | 4.4                      | 20062020   |  |
|          |                                  | MOV-FTOC            | Motor-Operated Valve Fails To<br>Open/Close                   | EPIX/RADS     | 346      | 593,626          | d      | 7120       | Beta                                                               | EB/PL/KS         | 1.42E-04 | 5.54E-04 | 6.40E-04 | 1.43E-03 | 2.430  | 3.800E+03 | 2.6                      | 20062020   |  |
|          |                                  | MOV-FC              | Motor-Operated Feed Control Valve Fails<br>To Control         | EPIX/RADS     | 59       | 1,634,537,000    | h      | 13344      | Gamma                                                              | EB/PL/KS         | 9.42E-10 | 2.17E-08 | 3.47E-08 | 1.13E-07 | 0.798  | 2.300E+07 | 5.2                      | 20062020   |  |
|          | Motor-Operated Valve<br>(MOV)    | MOV-SOP             | Motor-Operated Valve Spurious Operation                       | EPIX/RADS     | 41       | 1,634,537,000    | h      | 13344      | Gamma                                                              | JNID/IL          | 1.93E-08 | 2.53E-08 | 2.54E-08 | 3.23E-08 | 41.500 | 1.630E+09 | 1.3                      | 20062020   |  |
|          |                                  | MOV-ILS             | Motor-Operated Valve Internal Leakage<br>(Small)              | EPIX/RADS     | 55       | 1,634,537,000    | h      | 13344      | Gamma                                                              | EB/PL/KS         | 7.97E-11 | 1.49E-08 | 3.61E-08 | 1.44E-07 | 0.451  | 1.250E+07 | 9.7                      | 20062020   |  |
|          |                                  | MOV-ILL             | Motor-Operated Valve Internal Leakage (Rupture)               | NUREG/CR-6928 | (note c) |                  | h      | 13344      | Gamma                                                              | EB/PL/KS         | 7.73E-14 | 1.76E-10 | 7.22E-10 | 3.30E-09 | 0.300  | 4.155E+08 | 18.8                     | 20062020   |  |
| Valves   |                                  | MOV-ELS             | Motor-Operated Valve External Leakage<br>(Small)              | EPIX/RADS     | 29       | 1,634,537,000    | h      | 13344      | Gamma                                                              | EB/PL/KS         | 4.85E-11 | 7.97E-09 | 1.88E-08 | 7.43E-08 | 0.463  | 2.460E+07 | 9.3                      | 20062020   |  |
|          |                                  | MOV-ELL             | Motor-Operated Valve External Leakage (Rupture)               | NUREG/CR-6928 | (note c) |                  | h      | 13344      | Gamma                                                              | EB/PL/KS         | 1.41E-13 | 3.21E-10 | 1.32E-09 | 6.02E-09 | 0.300  | 2.280E+08 | 18.8                     | 20062020   |  |
|          |                                  | MOV-FTO-BFV         | Butterfly Valve Fails To Open                                 | EPIX/RADS     | 24       | 89,399           | d      | 983        | Beta                                                               | JNID/IL          | 1.90E-04 | 2.70E-04 | 2.74E-04 | 3.71E-04 | 24.500 | 8.940E+04 | 1.4                      | 20062020   |  |
|          |                                  | MOV-FTC-BFV         | Butterfly Valve Fails To Close                                | EPIX/RADS     | 24       | 89,399           | d      | 983        | Beta                                                               | EB/PL/KS         | 2.52E-05 | 2.18E-04 | 2.89E-04 | 7.97E-04 | 1.270  | 4.390E+03 | 3.7                      | 20062020   |  |
|          |                                  | MOV-FTOC-BFV        | Butterfly Valve Fails To Open/Close                           | EPIX/RADS     | 54       | 89,399           | d      | 983        | Beta                                                               | EB/PL/KS         | 7.34E-06 | 4.06E-04 | 7.69E-04 | 2.76E-03 | 0.602  | 7.830E+02 | 6.8                      | 20062020   |  |
|          |                                  | MOV-SOP-CCW         | Component Cooling Water MOV Spurious<br>Operation             | EPIX/RADS     | 4        | 183,661,900      | h      | 1472       | Gamma                                                              | JNID/IL          | 9.04E-09 | 2.27E-08 | 2.45E-08 | 4.60E-08 | 4.500  | 1.840E+08 | 2.0                      | 20062020   |  |
|          |                                  | MOV-SOP-SWS         | Standby Service Water Motor-Operated Valve Spurious Operation | EPIX/RADS     | 0        | 64,725,970       | h      | 566        | Gamma                                                              | JNID/IL          | 3.04E-11 | 3.52E-09 | 7.72E-09 | 2.97E-08 | 0.500  | 6.470E+07 | 8.4                      | 20062020   |  |
|          |                                  | MOV-BFV-SOP-<br>CCW | Component Cooling Water Butterfly Valve<br>Spurious Operation | EPIX/RADS     | 2        | 86,552,190       | h      | 738        | Gamma                                                              | JNID/IL          | 6.61E-09 | 2.51E-08 | 2.89E-08 | 6.39E-08 | 2.500  | 8.660E+07 | 2.5                      | 20062020   |  |
|          |                                  | HOV-FTOC            | Hydraulic-Operated Valve Fails To Open                        | EPIX/RADS     | 17       | 16,401           | d      | 219        | Beta                                                               | EB/PL/KS         | 2.23E-06 | 4.93E-04 | 1.23E-03 | 4.97E-03 | 0.436  | 3.530E+02 | 10.1                     | 20062020   |  |
|          |                                  | HOV-FC              | Hydraulic-Operated Valve Fails To<br>Control                  | EPIX/RADS     | 21       | 76,176,020       | h      | 603        | Gamma                                                              | JNID/IL          | 1.90E-07 | 2.78E-07 | 2.82E-07 | 3.89E-07 | 21.500 | 7.620E+07 | 1.4                      | 20062020   |  |
|          |                                  | HOV-SOP             | Hydraulic-Operated Valve Spurious<br>Operation                | EPIX/RADS     | 10       | 76,176,020       | h      | 603        | Gamma                                                              | EB/PL/KS         | 6.27E-10 | 5.84E-08 | 1.23E-07 | 4.64E-07 | 0.526  | 4.280E+06 | 7.9                      | 20062020   |  |
|          | Hydraulic-Operated               | HOV-ILS             | Hydraulic-Operated Valve Internal<br>Leakage (Small)          | EPIX/RADS     | 2        | 76,176,020       | h      | 603        | Gamma                                                              | JNID/IL          | 7.52E-09 | 2.86E-08 | 3.28E-08 | 7.26E-08 | 2.500  | 7.620E+07 | 2.5                      | 20062020   |  |
|          | Valve (HOV)                      | HOV-ILL             | Hydraulic-Operated Valve Internal<br>Leakage (Rupture)        | NUREG/CR-6928 | (note c) |                  | h      | 603        | Gamma                                                              | JNID/IL          | 7.02E-14 | 1.60E-10 | 6.56E-10 | 3.00E-09 | 0.300  | 4.573E+08 | 18.8                     | 20062020   |  |
|          |                                  | HOV-ELS             | Hydraulic-Operated Valve External<br>Leakage (Small)          | EPIX/RADS     | 7        | 76,176,020       | h      | 603        | Gamma                                                              | EB/PL/KS         | 2.08E-10 | 3.97E-08 | 9.66E-08 | 3.85E-07 | 0.449  | 4.650E+06 | 9.7                      | 20062020   |  |
|          |                                  | HOV-ELL             | Hydraulic-Operated Valve External<br>Leakage (Rupture)        | NUREG/CR-6928 | (note c) |                  | h      | 603        | Gamma                                                              | EB/PL/KS         | 7.24E-13 | 1.65E-09 | 6.76E-09 | 3.09E-08 | 0.300  | 4.437E+07 | 18.8                     | 20062020   |  |
|          |                                  | SOV-FTOC            | Solenoid-Operated Valve Fails To Open                         | EPIX/RADS     | 13       | 27,937           | d      | 555        | Beta                                                               | JNID/IL          | 2.89E-04 | 4.72E-04 | 4.83E-04 | 7.18E-04 | 13.500 | 2.790E+04 | 1.5                      | 20062020   |  |
|          | Solenoid-Operated<br>Valve (SOV) | SOV-FC              | Solenoid-Operated Valve Fails To Control                      | EPIX/RADS     | 15       | 115,760,700      | h      | 921        | Gamma                                                              | EB/PL/KS         | 1.52E-09 | 8.08E-08 | 1.52E-07 | 5.44E-07 | 0.609  | 4.010E+06 | 6.7                      | 20062020   |  |
|          |                                  | SOV-SOP             | Solenoid-Operated Valve Spurious<br>Operation                 | EPIX/RADS     | 9        | 115,760,700      | h      | 921        | Gamma                                                              | JNID/IL          | 4.36E-08 | 7.90E-08 | 8.21E-08 | 1.30E-07 | 9.500  | 1.160E+08 | 1.6                      | 20062020   |  |

|                                     | Component Failure |                                                                     |               | Data     |                      |        |            | Industry-average Failure Probability or Rate Distribution (note a) |                  |          |          |          |          |        |           |                          |            |
|-------------------------------------|-------------------|---------------------------------------------------------------------|---------------|----------|----------------------|--------|------------|--------------------------------------------------------------------|------------------|----------|----------|----------|----------|--------|-----------|--------------------------|------------|
| Component Type                      | Mode              | Description                                                         | Data Source   | Failures | Demands or Hours     | d or h | Components | Distribution                                                       | Analysis<br>Type | 5th      | Median   | Mean     | 95th     | α      | β         | Error Factor<br>(note b) | Date Range |
|                                     | SOV-ILS           | Solenoid-Operated Valve Internal Leakage<br>(Small)                 | EPIX/RADS     | 8        | 115,760,700          | h      | 921        | Gamma                                                              | JNID/IL          | 3.74E-08 | 7.04E-08 | 7.34E-08 | 1.19E-07 | 8.500  | 1.160E+08 | 1.7                      | 200620     |
|                                     | SOV-ILL           | Solenoid-Operated Valve Internal Leakage<br>(Rupture)               | NUREG/CR-6928 | (note c) |                      | h      | 921        | Gamma                                                              | JNID/IL          | 1.57E-13 | 3.58E-10 | 1.47E-09 | 6.72E-09 | 0.300  | 2.044E+08 | 18.8                     | 200620     |
|                                     | SOV-ELS           | Solenoid-Operated Valve External<br>Leakage (Small)                 | EPIX/RADS     | 2        | 115,760,700          | h      | 921        | Gamma                                                              | JNID/IL          | 4.94E-09 | 1.88E-08 | 2.16E-08 | 4.77E-08 | 2.500  | 1.160E+08 | 2.5                      | 200620     |
|                                     | SOV-ELL           | Solenoid-Operated Valve External<br>Leakage (Rupture)               | NUREG/CR-6928 | (note c) |                      | h      | 921        | Gamma                                                              | JNID/IL          | 1.62E-13 | 3.69E-10 | 1.51E-09 | 6.92E-09 | 0.300  | 1.984E+08 | 18.8                     | 20062      |
| Explosive-Operated<br>Valve (EOV)   | EOV-FTO           | Explosive-Operated Valve Fails To Open                              | EPIX/RADS     | 3        | 674                  | d      | 59         | Beta                                                               | EB/PL/KS         | 2.45E-04 | 3.23E-03 | 4.62E-03 | 1.38E-02 | 1.010  | 2.170E+02 | 4.3                      | 20062      |
|                                     | VBV-FTO           | Vacuum Breaker Valve Fails To Open                                  | EPIX/RADS     | 1        | 23,202               | d      | 167        | Beta                                                               | JNID/IL          | 7.58E-06 | 5.10E-05 | 6.46E-05 | 1.68E-04 | 1.500  | 2.320E+04 | 3.3                      | 20062      |
|                                     | VBV-FTC           | Vacuum Breaker Valve Fails To Close                                 | EPIX/RADS     | 1        | 23,202               | d      | 167        | Beta                                                               | JNID/IL          | 7.58E-06 | 5.10E-05 | 6.46E-05 | 1.68E-04 | 1.500  | 2.320E+04 | 3.3                      | 2006       |
|                                     | VBV-FTOC          | Vacuum Breaker Valve Fails To<br>Open/Close                         | EPIX/RADS     | 2        | 23,202               | d      | 167        | Beta                                                               | JNID/IL          | 2.47E-05 | 9.38E-05 | 1.08E-04 | 2.39E-04 | 2.500  | 2.320E+04 | 2.5                      | 2006       |
| Vacuum Breaker Valve<br>(VBV)       | VBV-SOP           | Vacuum Breaker Valve Spurious<br>Operation                          | EPIX/RADS     | 0        | 43,685,040           | h      | 343        | Gamma                                                              | JNID/IL          | 4.50E-11 | 5.21E-09 | 1.14E-08 | 4.40E-08 | 0.500  | 4.370E+07 | 8.4                      | 2006       |
|                                     | VBV-ILS           | Vacuum Breaker Valve Internal Leakage<br>(Small)                    | EPIX/RADS     | 2        | 43,685,040           | h      | 343        | Gamma                                                              | JNID/IL          | 1.31E-08 | 4.98E-08 | 5.72E-08 | 1.27E-07 | 2.500  | 4.370E+07 | 2.5                      | 2006       |
|                                     | VBV-ILL           | Vacuum Breaker Valve Internal Leakage                               | NUREG/CR-6928 | (note c) |                      | h      | 343        | Gamma                                                              | JNID/IL          | 1.22E-13 | 2.79E-10 | 1.14E-09 | 5.23E-09 | 0.300  | 2.622E+08 | 18.8                     | 2006       |
|                                     | TBV-FTO           | (Rupture)<br>Turbine Bypass Valve Fails To Open                     | EPIX/RADS     | 1        | 2,367                | d      | 73         | Beta                                                               | JNID/IL          | 7.42E-05 | 4.99E-04 | 6.33E-04 | 1.65E-03 | 1.500  | 2.370E+03 | 3.3                      | 2006       |
| Turbing Pumper Volue                | TBV-FTC           | Turbine Bypass Valve Fails To Close                                 | EPIX/RADS     | 0        | 2,367                | d      | 73         | Beta                                                               | JNID/IL          | 8.30E-07 | 9.60E-05 | 2.11E-04 | 8.10E-04 | 0.500  | 2.370E+03 | 8.4                      | 2006       |
| Turbine Bypass Valve<br>(TBV)       | TBV-FTOC          | Turbine Bypass Valve Fails To                                       | EPIX/RADS     | 1        |                      | d      | 73         | Beta                                                               | JNID/IL          | 7.42E-05 | 4.99E-04 | 6.33E-04 | 1.65E-03 | 1.500  | 2.370E+03 | 3.3                      | 2006       |
|                                     | TBV-FC            | Open/Close<br>Turbine Bypass Valve Fails To Control                 | EPIX/RADS     | 6        | 2,367<br>19,263,540  | h      | 153        | Gamma                                                              | EB/PL/KS         | 1.29E-09 | 1.60E-07 | 3.57E-07 | 1.38E-06 | 0.492  | 1.380E+06 | 8.6                      | 2006       |
|                                     | MSV-FTOC          | Main Steam Isolation Valve Fails To                                 | EPIX/RADS     | 24       | 22,100               | d      | 425        | Beta                                                               | JNID/IL          | 5.27E-04 | 7.50E-04 | 7.61E-04 | 1.03E-03 | 24.500 | 3.220E+04 | 1.4                      | 2006       |
|                                     | MSV-SOP           | Open/Close Main Steam Isolation Valve Spurious Openantian           | EPIX/RADS     | 16       | 32,199<br>65,768,320 | h      | 520        | Gamma                                                              | EB/PL/KS         | 9.30E-10 | 1.07E-07 | 2.34E-07 | 8.99E-07 | 0.501  | 2.140E+06 | 8.4                      | 2006-      |
|                                     | MSV-ILS           | Operation<br>Main Steam Isolation Valve Internal<br>Leakage (Small) | EPIX/RADS     | 23       | 65,768,320           | h      | 520        | Gamma                                                              | JNID/IL          | 2.45E-07 | 3.52E-07 | 3.57E-07 | 4.86E-07 | 23.500 | 6.580E+07 | 1.4                      | 2006-      |
| Main Steam Isolation<br>Valve (MSV) | MSV-ILL           | Main Steam Isolation Valve Internal<br>Leakage (Rupture)            | NUREG/CR-6928 | (note c) |                      | h      | 520        | Gamma                                                              | JNID/IL          | 7.64E-13 | 1.74E-09 | 7.14E-09 | 3.27E-08 | 0.300  | 4.202E+07 | 18.8                     | 2006       |
|                                     | MSV-ELS           | Main Steam Isolation Valve External<br>Leakage (Small)              | EPIX/RADS     | 1        | 65,768,320           | h      | 520        | Gamma                                                              | JNID/IL          | 2.67E-09 | 1.80E-08 | 2.28E-08 | 5.94E-08 | 1.500  | 6.580E+07 | 3.3                      | 2006       |
|                                     | MSV-ELL           | Main Steam Isolation Valve External<br>Leakage (Rupture)            | NUREG/CR-6928 | (note c) |                      | h      | 520        | Gamma                                                              | JNID/IL          | 1.71E-13 | 3.89E-10 | 1.60E-09 | 7.30E-09 | 0.300  | 1.880E+08 | 18.8                     | 2006       |
|                                     | CKV-FTO           | Check Valve Fails To Open                                           | EPIX/RADS     | 0        | 44.791               | d      | 489        | Beta                                                               | JNID/IL          | 4.39E-08 | 5.08E-06 | 1.12E-05 | 4.29E-05 | 0.500  | 4.480E+04 | 8.4                      | 2006       |
|                                     | CKV-FTC           | Check Valve Fails To Close                                          | EPIX/RADS     | 5        | 44,791               | d      | 489        | Beta                                                               | JNID/IL          | 5.11E-05 | 1.15E-04 | 1.23E-04 | 2.20E-04 | 5.500  | 4.480E+04 | 1.9                      | 2006       |
|                                     | CKV-SOP           | Check Valve Spurious Operation                                      | EPIX/RADS     | 0        | 806,744,700          | h      | 6379       | Gamma                                                              | JNID/IL          | 2.44E-12 | 2.82E-10 | 6.20E-10 | 2.38E-09 | 0.500  | 8.070E+08 | 8.4                      | 2006       |
| Check Valve (CKV)                   | CKV-ILS           | Check Valve Internal Leakage (Small)                                | EPIX/RADS     | 58       | 806,744,700          | h      | 6379       | Gamma                                                              | JNID/IL          | 5.76E-08 | 7.21E-08 | 7.25E-08 | 8.88E-08 | 58.500 | 8.070E+08 | 1.2                      | 2006-      |
|                                     | CKV-ILL           | Check Valve Internal Leakage (Rupture)                              | NUREG/CR-6928 | (note c) |                      | h      | 6379       | Gamma                                                              | JNID/IL          | 1.55E-13 | 3.53E-10 | 1.45E-09 | 6.63E-09 | 0.300  | 2.069E+08 | 18.8                     | 2006       |
|                                     | CKV-ELS           | Check Valve External Leakage (Small)                                | EPIX/RADS     | 3        | 806,744,700          | h      | 6379       | Gamma                                                              | JNID/IL          | 1.34E-09 | 3.93E-09 | 4.34E-09 | 8.72E-09 | 3.500  | 8.070E+08 | 2.2                      | 2006-      |
|                                     | CKV-ELL           | Check Valve External Leakage (Rupture)                              | NUREG/CR-6928 | (note c) |                      | h      | 6379       | Gamma                                                              | JNID/IL          | 3.25E-14 | 7.41E-11 | 3.04E-10 | 1.39E-09 | 0.300  | 9.875E+08 | 18.8                     | 2006-      |
|                                     | XVM-FTOC          | Manual Valve Fails To Open                                          | EPIX/RADS     | 1        | 2,875                | d      | 66         | Beta                                                               | JNID/IL          | 6.13E-05 | 4.12E-04 | 5.22E-04 | 1.36E-03 | 1.500  | 2.870E+03 | 3.3                      | 2006-      |
|                                     | XVM-SOP           | Manual Valve Spurious Operation                                     | EPIX/RADS     | 2        | 132,674,000          | h      | 1035       | Gamma                                                              | JNID/IL          | 4.31E-09 | 1.64E-08 | 1.88E-08 | 4.16E-08 | 2.500  | 1.330E+08 | 2.5                      | 2006       |
|                                     | XVM-ILS           | Manual Valve Internal Leakage (Small)                               | EPIX/RADS     | 3        | 132,674,000          | h      | 1035       | Gamma                                                              | JNID/IL          | 8.15E-09 | 2.39E-08 | 2.64E-08 | 5.29E-08 | 3.500  | 1.330E+08 | 2.2                      | 2006-      |
| Manual Valve (XVM)                  | XVM-ILL           | Manual Valve Internal Leakage (Rupture)                             | NUREG/CR-6928 | (note c) |                      | h      | 1035       | Gamma                                                              | JNID/IL          | 5.65E-14 | 1.29E-10 | 5.28E-10 | 2.42E-09 | 0.300  | 5.682E+08 | 18.8                     | 2006       |
|                                     | XVM-ELS           | Manual Valve External Leakage (Small)                               | EPIX/RADS     | 11       | 132,674,000          | h      | 1035       | Gamma                                                              | JNID/IL          | 4.92E-08 | 8.40E-08 | 8.67E-08 | 1.32E-07 | 11.500 | 1.330E+08 | 1.6                      | 2006       |
|                                     | XVM-ELL           | Manual Valve External Leakage (Rupture)                             | NUREG/CR-6928 | (note c) |                      | h      | 1035       | Gamma                                                              | JNID/IL          | 6.50E-13 | 1.48E-09 | 6.07E-09 | 2.78E-08 | 0.300  | 4.943E+07 | 18.8                     | 2006-      |
|                                     | XVM-SOP-SWS       | Standby Service Water Manual Valve<br>Spuriously Transfers          | EPIX/RADS     | 0        | 18,055,700           | h      | 140        | Gamma                                                              | JNID/IL          | 1.09E-10 | 1.26E-08 | 2.77E-08 | 1.06E-07 | 0.500  | 1.810E+07 | 8.4                      | 2006-      |
|                                     | FCV-FTOC          | Flow Control Valve Fails To Open/Close                              | EPIX/RADS     | 0        | 11,345               | d      | 105        | Beta                                                               | JNID/IL          | 1.74E-07 | 2.01E-05 | 4.41E-05 | 1.70E-04 | 0.500  | 1.130E+04 | 8.4                      | 2006       |
| Flow Control Valve (FCV)            | FCV-FC            | Flow Control Valve Fails To Control                                 | EPIX/RADS     | 8        | 73,637,280           | h      | 595        | Gamma                                                              | JNID/IL          | 5.89E-08 | 1.11E-07 | 1.15E-07 | 1.87E-07 | 8.500  | 7.360E+07 | 1.7                      | 2006       |

|          |                            | Component Failure      |                                                                             | Data Source   |          | Data             |        |            | Industry-average Failure Probability or Rate Distribution (note a) |                  |          |          |          |          |        |           |                          |            |
|----------|----------------------------|------------------------|-----------------------------------------------------------------------------|---------------|----------|------------------|--------|------------|--------------------------------------------------------------------|------------------|----------|----------|----------|----------|--------|-----------|--------------------------|------------|
| Grouping | Component Type             | Mode                   | Description                                                                 |               | Failures | Demands or Hours | d or h | Components | Distribution                                                       | Analysis<br>Type | 5th      | Median   | Mean     | 95th     | α      | β         | Error Factor<br>(note b) | Date Range |
|          |                            | FCV-SOP                | Flow Control Valve Spurious Operation                                       | EPIX/RADS     | 2        | 73,637,280       | h      | 595        | Gamma                                                              | JNID/IL          | 7.78E-09 | 2.96E-08 | 3.40E-08 | 7.52E-08 | 2.500  | 7.360E+07 | 2.5                      | 20062020   |
|          |                            | FRV-FTOP               | Feedwater Regulating Valve Fails To<br>Operate                              | EPIX/RADS     | 49       | 27,637,200       | h      | 221        | Gamma                                                              | EB/PL/KS         | 2.71E-08 | 1.06E-06 | 1.88E-06 | 6.52E-06 | 0.666  | 3.540E+05 | 6.1                      | 20062020   |
|          |                            | MDP-FTS-NS             | Motor-Driven Pump Fails To Start,<br>Normally Standby                       | EPIX/RADS     | 227      | 410,593          | d      | 1311       | Beta                                                               | EB/PL/KS         | 1.09E-04 | 4.96E-04 | 5.88E-04 | 1.38E-03 | 2.070  | 3.520E+03 | 2.8                      | 20062020   |
|          |                            | MDP-FTR<1H             | Motor-Driven Pump FTR<1H                                                    | EPIX/RADS     | 31       | 378,369          | h      | 1305       | Gamma                                                              | EB/PL/KS         | 7.34E-07 | 4.68E-05 | 9.13E-05 | 3.33E-04 | 0.579  | 6.340E+03 | 7.1                      | 20062020   |
|          |                            | MDP-FTR>1H             | Motor-Driven Pump FTR>1H                                                    | EPIX/RADS     | 92       | 19,248,030       | h      | 1311       | Gamma                                                              | EB/PL/KS         | 3.58E-08 | 3.77E-06 | 8.12E-06 | 3.10E-05 | 0.511  | 6.290E+04 | 8.2                      | 20062020   |
|          |                            | MDP-ELS                | Motor-Driven Pump External Leakage<br>(Small)                               | EPIX/RADS     | 59       | 288,839,600      | h      | 2351       | Gamma                                                              | EB/PL/KS         | 3.16E-09 | 1.14E-07 | 1.98E-07 | 6.80E-07 | 0.684  | 3.450E+06 | 6.0                      | 20062020   |
|          |                            | MDP-ELL                | Motor-Driven Pump External Leakage<br>(Rupture)                             | NUREG/CR-6928 | (note c) |                  | h      | 2351       | Gamma                                                              | EB/PL/KS         | 1.48E-12 | 3.38E-09 | 1.39E-08 | 6.34E-08 | 0.300  | 2.165E+07 | 18.8                     | 20062020   |
|          |                            | MDP-FTS-NR             | Motor-Driven Pump Fails To Start,<br>Normally Running                       | EPIX/RADS     | 89       | 125,005          | d      | 649        | Beta                                                               | EB/PL/KS         | 4.86E-05 | 5.62E-04 | 7.86E-04 | 2.30E-03 | 1.080  | 1.370E+03 | 4.1                      | 20062020   |
|          | Motor-Driven Pump<br>(MDP) | MDP-FTR-NR             | Motor-Driven Pump Fails To Run,<br>Normally Running                         | EPIX/RADS     | 129      | 56,750,330       | h      | 650        | Gamma                                                              | EB/PL/KS         | 3.94E-07 | 1.89E-06 | 2.26E-06 | 5.38E-06 | 1.970  | 8.720E+05 | 2.8                      | 20062020   |
|          |                            | MDP-FTS-CCW            | Component Cooling Water Motor-Driven<br>Pump Fails To Start                 | EPIX/RADS     | 31       | 80,067           | h      | 288        | Beta                                                               | EB/PL/KS         | 1.23E-05 | 2.86E-04 | 4.57E-04 | 1.49E-03 | 0.796  | 1.740E+03 | 5.2                      | 20062020   |
|          |                            | MDP-FTR-CCW            | Component Cooling Water Motor-Driven<br>Pump Fails To Run                   | EPIX/RADS     | 31       | 17,527,790       | h      | 288        | Gamma                                                              | EB/PL/KS         | 2.86E-07 | 1.47E-06 | 1.77E-06 | 4.33E-06 | 1.850  | 1.040E+06 | 2.9                      | 20062020   |
|          |                            | MDP-FTS-SWS            | Service Water Motor-Driven Pump Fails<br>To Start                           | EPIX/RADS     | 132      | 225,636          | d      | 529        | Beta                                                               | EB/PL/KS         | 2.43E-05 | 4.80E-04 | 7.43E-04 | 2.36E-03 | 0.848  | 1.140E+03 | 4.9                      | 20062020   |
|          |                            | MDP-FTR-SWS            | Service Water Motor-Driven Pump Fails<br>To Run                             | EPIX/RADS     | 100      | 25,635,460       | h      | 529        | Gamma                                                              | EB/PL/KS         | 3.09E-07 | 3.08E-06 | 4.20E-06 | 1.19E-05 | 1.170  | 2.790E+05 | 3.9                      | 20062020   |
|          |                            | MDP-FTR-CWS            | Circulating Water Motor-Driven Pump<br>Fails To Run                         | EPIX/RADS     | 15       | 3,116,679        | h      | 31         | Gamma                                                              | EB/PL/KS         | 1.81E-06 | 4.51E-06 | 4.86E-06 | 9.09E-06 | 4.570  | 9.410E+05 | 2.0                      | 20062020   |
|          |                            | TDP-FTS-NS             | Turbine-Driven Pump Fails To Start<br>(Pooled Systems), Normally Standby    | EPIX/RADS     | 105      | 22,512           | d      | 133        | Beta                                                               | EB/PL/KS         | 4.59E-04 | 4.02E-03 | 5.32E-03 | 1.47E-02 | 1.260  | 2.350E+02 | 3.7                      | 20062020   |
|          |                            | TDP-FTR<1H             | Turbine-Driven Pump Fails To Run<br>(Pooled Systems), Early Term            | EPIX/RADS     | 34       | 15,530           | h      | 133        | Gamma                                                              | EB/PL/KS         | 5.17E-06 | 1.04E-03 | 2.56E-03 | 1.03E-02 | 0.444  | 1.730E+02 | 9.9                      | 20062020   |
|          |                            | TDP-FTR>1H             | Turbine-Driven Pump Fails To Run<br>(Pooled Systems), Late Term             | EPIX/RADS     | 17       | 4,454            | h      | 133        | Gamma                                                              | EB/PL/KS         | 1.23E-05 | 2.56E-03 | 6.35E-03 | 2.55E-02 | 0.441  | 6.950E+01 | 10.0                     | 20062020   |
|          |                            | TDP-ELS                | Turbine-Driven Pump External Leakage<br>(Small)                             | EPIX/RADS     | 10       | 24,190,380       | h      | 191        | Gamma                                                              | EB/PL/KS         | 7.42E-08 | 3.47E-07 | 4.13E-07 | 9.75E-07 | 2.020  | 4.900E+06 | 2.8                      | 20062020   |
| sdu      |                            | TDP-ELL                | Turbine Bypass Valve External Leakage<br>(Rupture)                          | NUREG/CR-6928 | (note c) |                  | h      | 191        | Gamma                                                              | EB/PL/KS         | 3.09E-12 | 7.05E-09 | 2.89E-08 | 1.32E-07 | 0.300  | 1.038E+07 | 18.8                     | 20062020   |
| Pur      |                            | TDP-FTS-NS-AFW         | Auxiliary Feedwater Turbine-Driven Pump<br>Fails To Start, Normally Standby | EPIX/RADS     | 52       | 15,672           | d      | 74         | Beta                                                               | EB/PL/KS         | 1.17E-04 | 2.43E-03 | 3.79E-03 | 1.21E-02 | 0.831  | 2.180E+02 | 5.0                      | 20062020   |
|          | Turbine-Driven Pump        | TDP-FTR<1H-<br>AFW     | Auxiliary Feedwater Turbine-Driven Pump<br>FTR<1H                           | EPIX/RADS     | 18       | 10,670           | h      | 74         | Gamma                                                              | JNID/IL          | 1.12E-03 | 1.70E-03 | 1.73E-03 | 2.44E-03 | 18.500 | 1.070E+04 | 1.4                      | 20062020   |
|          | (TDP)                      | TDP-FTR>1H-<br>AFW     | Auxiliary Feedwater Turbine-Driven Pump<br>FTR>1H                           | EPIX/RADS     | 8        | 3,295            | h      | 74         | Gamma                                                              | JNID/IL          | 1.31E-03 | 2.48E-03 | 2.58E-03 | 4.18E-03 | 8.500  | 3.300E+03 | 1.7                      | 20062020   |
|          |                            | TDP-FTS-NS-HCI-<br>RCI | HCI-RCI Turbine-Driven Pump Fails To<br>Start, Normally Standby             | EPIX/RADS     | 25       | 4,026            | d      | 31         | Beta                                                               | EB/PL/KS         | 6.02E-04 | 5.07E-03 | 6.68E-03 | 1.82E-02 | 1.290  | 1.920E+02 | 3.6                      | 20062020   |
|          |                            | TDP-FTR<1H-<br>HCI-RCI | HCI Turbine-Driven Pump FTR<1H                                              | EPIX/RADS     | 16       | 4,860            | h      | 59         | Gamma                                                              | EB/PL/KS         | 6.73E-04 | 2.86E-03 | 3.35E-03 | 7.68E-03 | 2.220  | 6.640E+02 | 2.7                      | 20062020   |
|          |                            | TDP-FTR>1H-<br>HCI-RCI | HCI-RCI Turbine-Driven Pump FTR>1H                                          | EPIX/RADS     | 9        | 1,159            | h      | 59         | Gamma                                                              | JNID/IL          | 4.36E-03 | 7.90E-03 | 8.20E-03 | 1.30E-02 | 9.500  | 1.160E+03 | 1.6                      | 20062020   |
|          |                            | TDP-FTS-NR-<br>MFW     | Main Feedwater Turbine-Driven Pump<br>Fails To Start, Normally Running      | EPIX/RADS     | 5        | 1,147            | d      | 42         | Beta                                                               | EB/PL/KS         | 5.45E-05 | 2.52E-03 | 4.60E-03 | 1.62E-02 | 0.633  | 1.370E+02 | 6.4                      | 20062020   |
|          |                            | TDP-FTR-NR-<br>MFW     | Main Feedwater Turbine-Driven Pump<br>Fails To Run, Normally Running        | EPIX/RADS     | 39       | 4,938,575        | h      | 42         | Gamma                                                              | EB/PL/KS         | 2.53E-07 | 5.37E-06 | 8.45E-06 | 2.71E-05 | 0.824  | 9.760E+04 | 5.0                      | 20062020   |
|          |                            | EDP-FTS-NS             | Engine-Driven Pump Fails To Start,<br>Normally Standby                      | EPIX/RADS     | 13       | 17,773           | d      | 44         | Beta                                                               | JNID/IL          | 4.53E-04 | 7.39E-04 | 7.60E-04 | 1.13E-03 | 13.500 | 1.780E+04 | 1.5                      | 20062020   |
|          |                            | EDP-FTR<1H             | Engine-Driven Pump FTR<1H, Normally<br>Standby                              | EPIX/RADS     | 6        | 9,888            | h      | 39         | Gamma                                                              | JNID/IL          | 2.98E-04 | 6.24E-04 | 6.57E-04 | 1.13E-03 | 6.500  | 9.890E+03 | 1.8                      | 20062020   |
|          |                            | EDP-FTR>1H             | Engine-Driven Pump FTR>1H, Normally<br>Standby                              | EPIX/RADS     | 15       | 4,754            | h      | 44         | Gamma                                                              | JNID/IL          | 2.03E-03 | 3.19E-03 | 3.26E-03 | 4.74E-03 | 15.500 | 4.750E+03 | 1.5                      | 20062020   |
|          | Engine-Driven Pump         | EDP-ELS                | Engine-Driven Pump External Leakage<br>(Small)                              | EPIX/RADS     | 6        | 7,690,189        | h      | 69         | Gamma                                                              | JNID/IL          | 3.83E-07 | 8.02E-07 | 8.45E-07 | 1.45E-06 | 6.500  | 7.690E+06 | 1.8                      | 20062020   |
|          | (EDP)                      | EDP-ELL                | (Small)<br>Engine-Driven Pump External Leakage<br>(Rupture)                 | NUREG/CR-6928 | (note c) |                  | h      | 69         | Gamma                                                              | JNID/IL          | 6.33E-12 | 1.44E-08 | 5.92E-08 | 2.71E-07 | 0.300  | 5.072E+06 | 18.8                     | 20062020   |
|          |                            | EDP-FTS-AFW            | Auxiliary Feedwater Engine-driven pump<br>Fails To Start                    | EPIX/RADS     | 1        | 1,163            | d      | 5          | Beta                                                               | JNID/IL          | 1.52E-04 | 1.02E-03 | 1.29E-03 | 3.36E-03 | 1.500  | 1.160E+03 | 3.3                      | 20062020   |
|          |                            | EDP-FTR<1H-<br>AFW     | Auxiliary Feedwater Engine-driven pump<br>Fails To Run <1H                  | EPIX/RADS     | 2        | 759              | h      | 5          | Gamma                                                              | JNID/IL          | 7.55E-04 | 2.87E-03 | 3.29E-03 | 7.29E-03 | 2.500  | 7.590E+02 | 2.5                      | 20062020   |

|           |                                       | Component Failure  |                                                                    |                      |          | Data             |        |            | Industry-average Failure Probability or Rate Distribution (note a) |                  |          |          |          |          |        |           |                          |            |  |
|-----------|---------------------------------------|--------------------|--------------------------------------------------------------------|----------------------|----------|------------------|--------|------------|--------------------------------------------------------------------|------------------|----------|----------|----------|----------|--------|-----------|--------------------------|------------|--|
| Grouping  | Component Type                        | Mode               | Description                                                        | Data Source          | Failures | Demands or Hours | d or h | Components | Distribution                                                       | Analysis<br>Type | 5th      | Median   | Mean     | 95th     | α      | β         | Error Factor<br>(note b) | Date Range |  |
|           |                                       | EDP-FTR>1H-<br>AFW | Auxiliary Feedwater Engine-driven pump<br>Fails To Run >1H         | EPIX/RADS            | 2        | 234              | h      | 5          | Gamma                                                              | JNID/IL          | 2.45E-03 | 9.30E-03 | 1.07E-02 | 2.37E-02 | 2.500  | 2.340E+02 | 2.5                      | 20062020   |  |
|           |                                       | PDP-FTS-NR         | Positive Displacement Pump Fails To<br>Start, Normally Running     | EPIX/RADS            | 53       | 28,865           | d      | 57         | Beta                                                               | EB/PL/KS         | 7.46E-05 | 1.58E-03 | 2.47E-03 | 7.92E-03 | 0.825  | 3.330E+02 | 5.0                      | 20062020   |  |
|           |                                       | PDP-FTR-NR         | Positive Displacement Pump Fails To Run,<br>Normally Running       | EPIX/RADS            | 40       | 2,353,162        | h      | 54         | Gamma                                                              | EB/PL/KS         | 1.81E-06 | 1.45E-05 | 1.91E-05 | 5.17E-05 | 1.330  | 6.980E+04 | 3.6                      | 20062020   |  |
|           | Desitive Disels servers               | PDP-FTS-NS         | Positive Displacement Pump Fails To<br>Start, Normally Standby     | EPIX/RADS            | 10       | 9,064            | d      | 72         | Beta                                                               | JNID/IL          | 6.40E-04 | 1.12E-03 | 1.16E-03 | 1.80E-03 | 10.500 | 9.050E+03 | 1.6                      | 20062020   |  |
|           | Positive Displacement<br>Pump (PDP)   | PDP-FTR<1H         | Positive Displacement Pump FTR<1H                                  | EPIX/RADS            | 1        | 4,045            | h      | 72         | Gamma                                                              | JNID/IL          | 4.34E-05 | 2.92E-04 | 3.71E-04 | 9.65E-04 | 1.500  | 4.050E+03 | 3.3                      | 20062020   |  |
|           |                                       | PDP-FTR>1H         | Positive Displacement Pump FTR>1H                                  | EPIX/RADS            | 0        | 1,505            | h      | 72         | Gamma                                                              | JNID/IL          | 1.31E-06 | 1.52E-04 | 3.32E-04 | 1.28E-03 | 0.500  | 1.500E+03 | 8.4                      | 20062020   |  |
|           |                                       | PDP-ELS            | Positive Displacement Pump External<br>Leakage (Small)             | EPIX/RADS            | 15       | 21,211,980       | h      | 171        | Gamma                                                              | JNID/IL          | 4.55E-07 | 7.15E-07 | 7.31E-07 | 1.06E-06 | 15.500 | 2.120E+07 | 1.5                      | 20062020   |  |
|           |                                       | PDP-ELL            | Positive Displacement Pump External<br>Leakage (Rupture)           | NUREG/CR-6928        | (note c) |                  | h      | 171        | Gamma                                                              | JNID/IL          | 5.48E-12 | 1.25E-08 | 5.12E-08 | 2.34E-07 | 0.300  | 5.863E+06 | 18.8                     | 20062020   |  |
|           | Pump Volute (PMP)                     | PMP-Volute         | Pump Volute Fails To Run (Driver<br>Independent Centrifugal Pumps) | EPIX/RADS            | 16       | 133,247          | h      | 208        | Gamma                                                              | JNID/IL          | 7.84E-05 | 1.22E-04 | 1.24E-04 | 1.78E-04 | 16.500 | 1.330E+05 | 1.5                      | 20062020   |  |
|           |                                       | EDG-FTS            | Diesel Generator Fails To Start, Normally<br>Standby               | EPIX/RADS            | 136      | 61,363           | d      | 234        | Beta                                                               | EB/PL/KS         | 1.53E-03 | 2.19E-03 | 2.22E-03 | 3.02E-03 | 23.800 | 1.070E+04 | 1.4                      | 20062020   |  |
| I         | Emergency Diesel<br>Generator (EDG)   | EDG-FTLR           | Diesel Generator Fails To Load And Run,<br>Early                   | EPIX/RADS            | 172      | 53,343           | h      | 234        | Gamma                                                              | EB/PL/KS         | 1.05E-03 | 3.01E-03 | 3.31E-03 | 6.60E-03 | 3.610  | 1.090E+03 | 2.2                      | 20062020   |  |
| 1         |                                       | EDG-FTR            | Diesel Generator Fails To Run, Late Term                           | EPIX/RADS            | 155      | 137,584          | h      | 234        | Gamma                                                              | EB/PL/KS         | 3.90E-04 | 1.08E-03 | 1.18E-03 | 2.31E-03 | 3.830  | 3.250E+03 | 2.1                      | 20062020   |  |
|           |                                       | HTG-FTS            | Hydro Turbine Generator Fails To Start                             | EPIX/RADS            | 6        | 6,362            | d      | 2          | Beta                                                               | JNID/IL          | 4.63E-04 | 9.69E-04 | 1.02E-03 | 1.76E-03 | 6.500  | 6.360E+03 | 1.8                      | 20062020   |  |
|           | Hydro Turbine<br>Generator (HTG)      | HTG-FTLR           | Hydro Turbine Generator Fails To Load<br>And Run, Early            | EPIX/RADS            | 2        | 4,582            | h      | 2          | Gamma                                                              | JNID/IL          | 1.25E-04 | 4.75E-04 | 5.46E-04 | 1.21E-03 | 2.500  | 4.580E+03 | 2.5                      | 20062020   |  |
| I         | Generator (HTG)                       | HTG-FTR            | Hydro Turbine Generator Fails To Run,<br>Late Term                 | EPIX/RADS            | 1        | 13,874           | h      | 2          | Gamma                                                              | JNID/IL          | 1.27E-05 | 8.51E-05 | 1.08E-04 | 2.81E-04 | 1.500  | 1.390E+04 | 3.3                      | 20062020   |  |
| tors      | Combustion Turbine<br>Generator (CTG) | CTG-FTS            | Combustion Turbine Generator Fails To<br>Start, Normally Standby   | EPIX/RADS            | 21       | 419              | d      | 3          | Beta                                                               | EB/PL/KS         | 5.81E-03 | 5.40E-02 | 7.03E-02 | 1.90E-01 | 1.200  | 1.590E+01 | 3.5                      | 20062020   |  |
| Genera    |                                       | CTG-FTLR           | Combustion Turbine Generator Fails To<br>Load And Run, Early Term  | EPIX/RADS            | 2        | 360              | d      | 2          | Gamma                                                              | JNID/IL          | 1.59E-03 | 6.04E-03 | 6.94E-03 | 1.54E-02 | 2.500  | 3.600E+02 | 2.5                      | 20062020   |  |
| •         |                                       | CTG-FTR            | Combustion Turbine Generator Fails To<br>Run, Late Term            | EPIX/RADS            | 4        | 959              | h      | 3          | Gamma                                                              | JNID/IL          | 1.73E-03 | 4.35E-03 | 4.69E-03 | 8.82E-03 | 4.500  | 9.590E+02 | 2.0                      | 20062020   |  |
|           | High-Pressure Core                    | EDG-FTS-HCS        | High-Pressure Core Spray Generator Fails<br>To Start               | EPIX/RADS            | 4        | 2,114            | d      | 8          | Beta                                                               | JNID/IL          | 7.87E-04 | 1.97E-03 | 2.13E-03 | 4.00E-03 | 4.500  | 2.110E+03 | 2.0                      | 20062020   |  |
|           | Spray Generator (HPCS)                | EDG-FTR-HCS        | High-Pressure Core Spray Generator Fails<br>To Run                 | EPIX/RADS            | 3        | 4,196            | h      | 8          | Gamma                                                              | JNID/IL          | 2.58E-04 | 7.55E-04 | 8.34E-04 | 1.67E-03 | 3.500  | 4.200E+03 | 2.2                      | 20062020   |  |
| I         | Station Blackout (SBO)                | EDG-FTS-SBO        | SBO Generator Fails To Start                                       | EPIX/RADS            | 14       | 625              | d      | 5          | Beta                                                               | EB/PL/KS         | 1.46E-03 | 2.06E-02 | 2.94E-02 | 8.75E-02 | 0.975  | 3.220E+01 | 4.3                      | 20062020   |  |
| I         | Generator                             | EDG-FTR-SBO        | SBO Generator Fails To Run                                         | EPIX/RADS            | 2        | 2,204            | h      | 5          | Gamma                                                              | JNID/IL          | 2.60E-04 | 9.89E-04 | 1.13E-03 | 2.52E-03 | 2.500  | 2.200E+03 | 2.5                      | 20062020   |  |
|           |                                       | SRV-FTO            | Safety relief valve fails To open                                  | RV Update, Table 26. | 7        | 3,548            | d      |            | Beta                                                               | JNID             | 1.02E-03 | 2.02E-03 | 2.11E-03 | 3.52E-03 | 7.500  | 3.542E+03 | 1.7                      | 19882020   |  |
| I         |                                       | SRV-FTC            | BWR ADS/SRV Fails To Reclose                                       | RV Update, Table 26. | 0        | 3,548            | d      |            | Beta                                                               | CNID             | 5.54E-07 | 6.41E-05 | 1.41E-04 | 5.41E-04 | 0.500  | 3.547E+03 | 8.4                      | 19882020   |  |
| I         |                                       | SRV-FC             | Safety Relief Valve (BWR Only) Fails To<br>Control                 | EPIX/RADS            | 0        | 61,005,550       | h      | 519        | Gamma                                                              | JNID/IL          | 3.22E-11 | 3.73E-09 | 8.20E-09 | 3.15E-08 | 0.500  | 6.100E+07 | 8.4                      | 20062020   |  |
|           |                                       | SRV-SOP            | Safety Relief Valve Spurious Operation                             | EPIX/RADS            | 4        | 61,005,550       | h      | 519        | Gamma                                                              | JNID/IL          | 2.73E-08 | 6.84E-08 | 7.38E-08 | 1.39E-07 | 4.500  | 6.100E+07 | 2.0                      | 20062020   |  |
|           | Safety Relief Valve (SRV)             | SRV-ILS            | Safety Relief Valve (BWR Only) Internal<br>Leakage (Small)         | EPIX/RADS            | 23       | 61,005,550       | h      | 519        | Gamma                                                              | JNID/IL          | 2.64E-07 | 3.80E-07 | 3.85E-07 | 5.25E-07 | 23.500 | 6.100E+07 | 1.4                      | 20062020   |  |
| ef Valves |                                       | SRV-ILL            | Safety Relief Valve (BWR Only) Internal<br>Leakage (Rupture)       | NUREG/CR-6928        | (note c) |                  | h      | 519        | Gamma                                                              | JNID/IL          | 8.24E-13 | 1.88E-09 | 7.70E-09 | 3.52E-08 | 0.300  | 3.896E+07 | 18.8                     | 20062020   |  |
| Reli      |                                       | SRV-ELS            | Safety Relief Valve (BWR Only) External<br>Leakage (Small)         | EPIX/RADS            | 0        | 61,005,550       | h      | 519        | Gamma                                                              | JNID/IL          | 3.22E-11 | 3.73E-09 | 8.20E-09 | 3.15E-08 | 0.500  | 6.100E+07 | 8.4                      | 20062020   |  |
|           |                                       | SRV-ELL            | Safety Relief Valve (BWR Only) External<br>Leakage (Rupture)       | NUREG/CR-6928        | (note c) |                  | h      | 519        | Gamma                                                              | JNID/IL          | 6.14E-14 | 1.40E-10 | 5.74E-10 | 2.63E-09 | 0.300  | 5.226E+08 | 18.8                     | 20062020   |  |
|           |                                       | SVV-SOP            | Code Safety Valve Spurious Operation                               | EPIX/RADS            | 1        | 171,647,800      | h      | 1380       | Gamma                                                              | JNID/IL          | 1.02E-09 | 6.88E-09 | 8.74E-09 | 2.27E-08 | 1.500  | 1.720E+08 | 3.3                      | 20062020   |  |
|           | Safety Valve (SVV)                    | SVV-ILS            | Code Safety Valve Internal Leakage<br>(Small)                      | EPIX/RADS            | 5        | 171,647,800      | h      | 1380       | Gamma                                                              | JNID/IL          | 1.33E-08 | 3.01E-08 | 3.20E-08 | 5.72E-08 | 5.500  | 1.720E+08 | 1.9                      | 20062020   |  |
|           |                                       | SVV-ILL            | Code Safety Valve Internal Leakage<br>(Rupture)                    | NUREG/CR-6928        | (note c) |                  | h      | 1380       | Gamma                                                              | JNID/IL          | 6.85E-14 | 1.56E-10 | 6.40E-10 | 2.93E-09 | 0.300  | 4.688E+08 | 18.8                     | 20062020   |  |

| ng | Component Type                        | Component Failure   | Description                                                                             |                        | Data     |                  |        |            | Industry-average Failure Probability or Rate Distribution (note a) |                  |          |          |          |          |        |           |                          |          |
|----|---------------------------------------|---------------------|-----------------------------------------------------------------------------------------|------------------------|----------|------------------|--------|------------|--------------------------------------------------------------------|------------------|----------|----------|----------|----------|--------|-----------|--------------------------|----------|
|    |                                       | Mode                |                                                                                         | Data Source            | Failures | Demands or Hours | d or h | Components | Distribution                                                       | Analysis<br>Type | 5th      | Median   | Mean     | 95th     | α      | β         | Error Factor<br>(note b) | Date Ran |
|    |                                       | SVV-ELS             | Code Safety Valve External Leakage (Small)                                              | EPIX/RADS              | 1        | 171,647,800      | h      | 1380       | Gamma                                                              | JNID/IL          | 1.02E-09 | 6.88E-09 | 8.74E-09 | 2.27E-08 | 1.500  | 1.720E+08 | 3.3                      | 2006     |
|    |                                       | SVV-ELL             | Code Safety Valve External Leakage<br>(Rupture)                                         | NUREG/CR-6928          | (note c) |                  | h      | 1380       | Gamma                                                              | JNID/IL          | 6.55E-14 | 1.49E-10 | 6.12E-10 | 2.80E-09 | 0.300  | 4.904E+08 | 18.8                     | 2006     |
|    |                                       | SVV-FTO-PWR-<br>MSS | Safety Valve Fails To Open+D174 PWRs)                                                   | RV Update, Table 24.   | 0        | 745              | d      |            | Beta                                                               | CNID             | 2.61E-06 | 3.05E-04 | 6.70E-04 | 2.58E-03 | 0.499  | 7.440E+02 | 8.5                      | 1988     |
|    |                                       | SVV-FTC-PWR-<br>MSS | Safety Valve Fails To Close (Main Steam System, PWRs)                                   | RV Update, Table 24.   | 4        | 745              | d      |            | Beta                                                               | JNID             | 2.23E-03 | 5.60E-03 | 6.03E-03 | 1.13E-02 | 4.500  | 7.415E+02 | 2.0                      | 1988-    |
|    |                                       | SVV-SOP-PWR-<br>MSS | Safety Valve Spurious Operation (Main<br>Steam System, PWRs)                            | EPIX/RADS              | 0        | 140,068,800      | h      | 1109       | Gamma                                                              | JNID/IL          | 1.40E-11 | 1.62E-09 | 3.57E-09 | 1.37E-08 | 0.500  | 1.400E+08 | 8.4                      | 2006-    |
|    |                                       | SVV-FTO-PWR-<br>RCS | Safety Valve Fails To Open (Reactor<br>Coolant System, PWRs)                            | RV Update, Table 25.   | 0        | 4                | d      |            | Beta                                                               | Bayes            | 2.58E-06 | 3.01E-04 | 6.63E-04 | 2.55E-03 | 0.499  | 7.520E+02 | 8.5                      | 1988-    |
| ĺ  |                                       | SVV-FTC-PWR-<br>RCS | Safety Valve Fails To Close (Reactor<br>Coolant System, PWRs)                           | RV Update, Table 25.   | 2        | 4                | d      |            | Beta                                                               | Bayes            | 9.65E-03 | 3.63E-02 | 4.13E-02 | 9.01E-02 | 2.487  | 5.769E+01 | 2.5                      | 1988-    |
|    |                                       | SVV-SOP-PWR-<br>RCS | Safety Valve Spurious Operation (Reactor<br>Coolant System, PWRs)                       | EPIX/RADS              | 1        | 23,893,310       | h      | 207        | Gamma                                                              | JNID/IL          | 7.36E-09 | 4.95E-08 | 6.28E-08 | 1.63E-07 | 1.500  | 2.390E+07 | 3.3                      | 2006     |
|    |                                       | PORV-FTO-RCS        | Power-Operated Relief Valve Fails To<br>Open (Reactor Coolant System, PWRs)             | RV Update, Table 23.   | 4        | 377              | d      |            | Beta                                                               | JNID             | 4.42E-03 | 1.11E-02 | 1.19E-02 | 2.23E-02 | 4.500  | 3.735E+02 | 2.0                      | 1988-    |
|    |                                       | PORV-FTC-RCS        | Power-Operated Relief Valve Fails To<br>Close (Reactor Coolant System, PWRs)            | RV Update, Table 23.   | 1        | 377              | d      |            | Beta                                                               | CNID             | 1.47E-05 | 1.79E-03 | 3.97E-03 | 1.53E-02 | 0.494  | 1.240E+02 | 8.5                      | 1988     |
|    |                                       | PORV-FTO-MSS        | Power-Operated Relief Valve Fails To<br>Open (Main Steam System, PWRs)                  | RV Update, Table 22.   | 25       | 1,580            | d      |            | Beta                                                               | JNID             | 1.13E-02 | 1.59E-02 | 1.61E-02 | 2.17E-02 | 25.500 | 1.556E+03 | 1.4                      | 1988-    |
|    |                                       | PORV-FTC-MSS        | Power-Operated Relief Fails To Close<br>(Main Steam System, PWRs)                       | RV Update, Table 22.   | 7        | 1,580            | d      |            | Beta                                                               | EB               | 2.54E-04 | 3.08E-03 | 4.35E-03 | 1.28E-02 | 1.053  | 2.412E+02 | 4.1                      | 1988-    |
|    |                                       | PORV-FC-MSS         | Power-Operated Relief Fails To Control<br>(Cooldown) (Main Steam System, PWRs)          | RV Update, Table 22.   | 7        | 278              | d      |            | Beta                                                               | JNID             | 1.31E-02 | 2.58E-02 | 2.69E-02 | 4.45E-02 | 7.500  | 2.715E+02 | 1.7                      | 1988-    |
|    | Power Operated Poliof                 | PORV-SOP            | Power Operated Relief Spurious Operation                                                | EPIX/RADS              | 13       | 57,223,460       | h      | 454        | Gamma                                                              | JNID/IL          | 1.41E-07 | 2.30E-07 | 2.36E-07 | 3.51E-07 | 13.500 | 5.720E+07 | 1.5                      | 2006-    |
|    | Power-Operated Relief<br>Valve (PORV) | PORV-ILS            | Power-Operated Relief Valve Internal<br>Leakage (Small)                                 | EPIX/RADS              | 3        | 57,223,460       | h      | 454        | Gamma                                                              | JNID/IL          | 1.89E-08 | 5.55E-08 | 6.12E-08 | 1.23E-07 | 3.500  | 5.720E+07 | 2.2                      | 2006-    |
|    |                                       | PORV-ILL            | Power-Operated Relief Valve Internal<br>Leakage (Rupture)                               | NUREG/CR-6928          | (note c) |                  | h      | 454        | Gamma                                                              | JNID/IL          | 1.31E-13 | 2.98E-10 | 1.22E-09 | 5.60E-09 | 0.300  | 2.451E+08 | 18.8                     | 2006-    |
|    |                                       | PORV-ELS            | Power-Operated Relief Valve External<br>Leakage (Small)                                 | EPIX/RADS              | 0        | 57,223,460       | h      | 454        | Gamma                                                              | JNID/IL          | 3.44E-11 | 3.98E-09 | 8.74E-09 | 3.36E-08 | 0.500  | 5.720E+07 | 8.4                      | 2006-    |
|    |                                       | PORV-ELL            | Power-Operated Relief Valve External<br>Leakage (Rupture)                               | NUREG/CR-6928          | (note c) |                  | h      | 454        | Gamma                                                              | JNID/IL          | 6.55E-14 | 1.49E-10 | 6.12E-10 | 2.80E-09 | 0.300  | 4.904E+08 | 18.8                     | 2006-    |
|    |                                       | PORV-LOOP           | Power-Operated Relief Valves Open<br>During LOOP (Reactor Coolant System,<br>PWRs)      | RV Update, Table<br>13 |          |                  | d      |            | Point Estimate                                                     | Point Estimate   |          |          | 9.23E-02 |          |        |           |                          | 1988-    |
|    |                                       | PORV-Transient      | Power-Operated Relief Valves Open<br>During Transient (Reactor Coolant System,<br>PWRs) | RV Update, Table<br>13 |          |                  | d      |            | Point Estimate                                                     | Point Estimate   |          |          | 2.28E-02 |          |        |           |                          | 1988     |
|    |                                       | RVL-FTO             | Low Capacity Relief Valve Fails To Open                                                 | EPIX/RADS              | 0        | 65               | d      | 12         | Beta                                                               | JNID/IL          | 3.02E-05 | 3.49E-03 | 7.59E-03 | 2.91E-02 | 0.500  | 6.540E+01 | 8.3                      | 2006     |
|    |                                       | RVL-FTC             | Low Capacity Relief Valve Fails To Close                                                | EPIX/RADS              | 0        | 65               | d      | 12         | Beta                                                               | JNID/IL          | 3.02E-05 | 3.49E-03 | 7.59E-03 | 2.91E-02 | 0.500  | 6.540E+01 | 8.3                      | 2006-    |
|    |                                       | RVL-SOP             | Low Capacity Relief Valve Spurious<br>Operation                                         | EPIX/RADS              | 0        | 9,165,162        | h      | 79         | Gamma                                                              | JNID/IL          | 2.14E-10 | 2.48E-08 | 5.46E-08 | 2.09E-07 | 0.500  | 9.170E+06 | 8.4                      | 2006-    |
|    | Low-Capacity Relief<br>Valve (RVL)    | RVL-ILS             | Low Capacity Relief Valve Internal<br>Leakage (Small)                                   | EPIX/RADS              | 3        | 9,165,162        | h      | 79         | Gamma                                                              | JNID/IL          | 1.18E-07 | 3.46E-07 | 3.82E-07 | 7.67E-07 | 3.500  | 9.170E+06 | 2.2                      | 2006-    |
|    | vaive (RVL)                           | RVL-ILL             | Low Capacity Relief Valve Internal<br>Leakage (Rupture)                                 | NUREG/CR-6928          | (note c) |                  | h      | 79         | Gamma                                                              | JNID/IL          | 8.18E-13 | 1.86E-09 | 7.64E-09 | 3.49E-08 | 0.300  | 3.927E+07 | 18.8                     | 2006-    |
|    |                                       | RVL-ELS             | Low Capacity Relief Valve External<br>Leakage (Small)                                   | EPIX/RADS              | 3        | 9,165,162        | h      | 79         | Gamma                                                              | JNID/IL          | 1.18E-07 | 3.46E-07 | 3.82E-07 | 7.67E-07 | 3.500  | 9.170E+06 | 2.2                      | 2006-    |
|    |                                       | RVL-ELL             | Low Capacity Relief Valve External<br>Leakage (Rupture)                                 | NUREG/CR-6928          | (note c) |                  | h      | 79         | Gamma                                                              | JNID/IL          | 2.86E-12 | 6.52E-09 | 2.67E-08 | 1.22E-07 | 0.300  | 1.122E+07 | 18.8                     | 2006-    |
|    | Battery Charger (BCH)                 | BCH-FTOP            | Battery Charger Fails To Operate                                                        | EPIX/RADS              | 161      | 99,754,050       | h      | 781        | Gamma                                                              | EB/PL/KS         | 1.09E-07 | 1.26E-06 | 1.76E-06 | 5.15E-06 | 1.080  | 6.120E+05 | 4.1                      | 2006-    |
|    | Battery (BAT)                         | BAT-FTOP            | Battery Fails To Operate                                                                | EPIX/RADS              | 21       | 52,018,730       | h      | 412        | Gamma                                                              | EB/PL/KS         | 4.79E-09 | 2.21E-07 | 4.05E-07 | 1.42E-06 | 0.634  | 1.570E+06 | 6.5                      | 2006-    |
|    | Automatic Bus Transfer                | ABT-FF              | Automatic Power Transfer Switch Fails To<br>Transfer                                    | EPIX/RADS              | 4        | 3,377            | d      | 27         | Beta                                                               | JNID/IL          | 4.93E-04 | 1.24E-03 | 1.33E-03 | 2.51E-03 | 4.500  | 3.370E+03 | 2.0                      | 2006-    |
|    | Switch (ABT)                          | ABT-SOP             | Automatic Power Transfer Switch<br>Spurious Operation                                   | EPIX/RADS              | 0        | 4,010,342        | h      | 32         | Gamma                                                              | JNID/IL          | 4.90E-10 | 5.67E-08 | 1.25E-07 | 4.79E-07 | 0.500  | 4.010E+06 | 8.4                      | 2006-    |
|    | Circuit Breaker (CRB)                 | CRB-FTOC            | Circuit Breaker Fails To Open/Close                                                     | EPIX/RADS              | 102      | 119,027          | d      | 3461       | Beta                                                               | EB/PL/KS         | 4.23E-05 | 9.91E-04 | 1.59E-03 | 5.16E-03 | 0.793  | 4.990E+02 | 5.2                      | 2006-    |

|       | Component Trees                    | Component Failure       | _                                                                         |               | Data     |                  |        |            | Industry-average Failure Probability or Rate Distribution (note a) |                  |          |          |          |          |        |           |                          |            |
|-------|------------------------------------|-------------------------|---------------------------------------------------------------------------|---------------|----------|------------------|--------|------------|--------------------------------------------------------------------|------------------|----------|----------|----------|----------|--------|-----------|--------------------------|------------|
| iping | Component Type                     | Mode                    | Description                                                               | Data Source   | Failures | Demands or Hours | d or h | Components | Distribution                                                       | Analysis<br>Type | 5th      | Median   | Mean     | 95th     | α      | β         | Error Factor<br>(note b) | Date Range |
|       |                                    | CRB-SOP                 | Circuit Breaker (All Voltages) Spurious<br>Operation                      | EPIX/RADS     | 57       | 552,883,300      | h      | 4620       | Gamma                                                              | EB/PL/KS         | 4.58E-10 | 7.38E-08 | 1.73E-07 | 6.84E-07 | 0.465  | 2.680E+06 | 9.3                      | 20062020   |
|       |                                    | CRBHV-FTOC              | High Voltage (13.8 and 16 kV) Circuit<br>Breaker Fails To Open/Close      | EPIX/RADS     | 17       | 9,198            | d      | 244        | Beta                                                               | JNID/IL          | 1.22E-03 | 1.87E-03 | 1.90E-03 | 2.71E-03 | 17.500 | 9.180E+03 | 1.4                      | 20062020   |
|       |                                    | CRBHV-SOP               | High Voltage (13.8 and 16 Kv) Circuit<br>Breaker Spurious Operation       | EPIX/RADS     | 14       | 37,600,840       | h      | 300        | Gamma                                                              | JNID/IL          | 2.35E-07 | 3.77E-07 | 3.86E-07 | 5.66E-07 | 14.500 | 3.760E+07 | 1.5                      | 20062020   |
|       |                                    | CRBMV-FTOC              | Medium Voltage (4160 V and 6.9 kV)<br>Circuit Breaker Fails To Open/Close | EPIX/RADS     | 57       | 50,897           | d      | 1080       | Beta                                                               | EB/PL/KS         | 7.09E-06 | 1.13E-03 | 2.64E-03 | 1.04E-02 | 0.466  | 1.760E+02 | 9.2                      | 20062020   |
|       |                                    | CRBMV-SOP               | Medium Voltage (4160 v and 6.9 Kv)<br>Circuit Breaker Spurious Operation  | EPIX/RADS     | 15       | 149,457,800      | h      | 1240       | Gamma                                                              | JNID/IL          | 6.47E-08 | 1.02E-07 | 1.04E-07 | 1.51E-07 | 15.500 | 1.490E+08 | 1.5                      | 20062020   |
|       |                                    | CRB-FTOC-480            | Low Voltage (480 V) Circuit Breaker Fails<br>To Open/Close                | EPIX/RADS     | 25       | 46,176           | d      | 1752       | Beta                                                               | EB/PL/KS         | 3.27E-06 | 3.89E-04 | 8.57E-04 | 3.30E-03 | 0.497  | 5.790E+02 | 8.5                      | 20062020   |
|       |                                    | CRB-SOP-480             | Low Voltage (480 V) Circuit Breaker<br>Spurious Operation                 | EPIX/RADS     | 27       | 310,690,800      | h      | 2630       | Gamma                                                              | JNID/IL          | 6.26E-08 | 8.74E-08 | 8.85E-08 | 1.18E-07 | 27.500 | 3.110E+08 | 1.3                      | 2006202    |
|       |                                    | CRBDC-FTOC              | DC Circuit Breaker Fails To Open/Close                                    | EPIX/RADS     | 5        | 17,566           | d      | 602        | Beta                                                               | JNID/IL          | 1.30E-04 | 2.94E-04 | 3.13E-04 | 5.59E-04 | 5.500  | 1.760E+04 | 1.9                      | 2006202    |
|       |                                    | CRBDC-SOP               | DC Circuit Breaker Spurious Operation                                     | EPIX/RADS     | 0        | 34,938,600       | h      | 270        | Gamma                                                              | JNID/IL          | 5.63E-11 | 6.52E-09 | 1.43E-08 | 5.50E-08 | 0.500  | 3.490E+07 | 8.4                      | 2006202    |
|       | Inverter (INV)                     | INV-FTOP                | Inverter Fails To Operate                                                 | EPIX/RADS     | 52       | 24,269,470       | h      | 199        | Gamma                                                              | EB/PL/KS         | 1.73E-07 | 2.41E-06 | 3.49E-06 | 1.05E-05 | 0.986  | 2.820E+05 | 4.4                      | 2006202    |
|       |                                    | BUS-FTOP-AC             | AC Bus Fails To Operate                                                   | EPIX/RADS     | 76       | 160,545,900      | h      | 1296       | Gamma                                                              | EB/PL/KS         | 2.91E-08 | 4.05E-07 | 5.88E-07 | 1.77E-06 | 0.986  | 1.680E+06 | 4.4                      | 200620     |
|       | Bus (BUS)                          | BUS-FTOP-DC             | DC Bus Fails To Operate                                                   | EPIX/RADS     | 1        | 2,103,936        | h      | 16         | Gamma                                                              | JNID/IL          | 8.38E-08 | 5.63E-07 | 7.13E-07 | 1.86E-06 | 1.500  | 2.100E+06 | 3.3                      | 200620     |
|       | Motor Control Center<br>(MCC)      | MCC-FTOP                | Motor Control Center Fails To Operate                                     | EPIX/RADS     | 7        | 28,535,130       | h      | 217        | Gamma                                                              | EB/PL/KS         | 1.31E-08 | 1.70E-07 | 2.43E-07 | 7.24E-07 | 1.020  | 4.190E+06 | 4.3                      | 200620     |
|       | Transformer (TFM)                  | TFM-FTOP                | Transformer Fails To Operate                                              | EPIX/RADS     | 110      | 60,181,620       | h      | 512        | Gamma                                                              | EB/PL/KS         | 2.58E-07 | 1.55E-06 | 1.93E-06 | 4.88E-06 | 1.630  | 8.470E+05 | 3.1                      | 200620     |
|       | Sequencer (SEQ)                    | SEQ-FTOP                | Sequencer fails To operate (as a Sub<br>Component of the EDG)             | EPIX/RADS     | 6        | 61,363           | d      | 234        | Beta                                                               | JNID/IL          | 4.80E-05 | 1.00E-04 | 1.06E-04 | 1.82E-04 | 6.500  | 6.140E+04 | 1.8                      | 200620     |
|       | Fuse                               | FUS-SOP                 | Fuse Spurious Operation                                                   | EPIX/RADS     | 1        | 169,366,800      | h      | 1288       | Gamma                                                              | JNID/IL          | 1.04E-09 | 7.00E-09 | 8.86E-09 | 2.31E-08 | 1.500  | 1.690E+08 | 3.3                      | 200620     |
|       | Filter (FLT)                       | STR-FLT-RAW-<br>PG      | Strainer Plugging (Dirty water systems)                                   | EPIX/RADS     | 6        | 7,922,615        | h      | 62         | Gamma                                                              | JNID/IL          | 3.72E-07 | 7.79E-07 | 8.20E-07 | 1.41E-06 | 6.500  | 7.920E+06 | 1.8                      | 200620     |
|       |                                    | STR-FLT-ELS             | Filter External Leakage (Small) All<br>Systems                            | EPIX/RADS     | 1        | 28,097,240       | h      | 223        | Gamma                                                              | JNID/IL          | 6.26E-09 | 4.21E-08 | 5.34E-08 | 1.39E-07 | 1.500  | 2.810E+07 | 3.3                      | 200620     |
|       |                                    | STR-FLT-ELL             | Filter External Leakage (Small) All<br>Systems                            | NUREG/CR-6928 | (note c) |                  | h      | 223        | Gamma                                                              | JNID/IL          | 4.00E-13 | 9.11E-10 | 3.74E-09 | 1.71E-08 | 0.300  | 8.026E+07 | 18.8                     | 200620     |
|       |                                    | STR-FLT-CLEAN-<br>PG    | Filter Plugging, Clean Systems                                            | EPIX/RADS     | 1        | 8,161,140        | h      | 68         | Gamma                                                              | JNID/IL          | 2.16E-08 | 1.45E-07 | 1.84E-07 | 4.79E-07 | 1.500  | 8.160E+06 | 3.3                      | 200620     |
|       |                                    | STR-FLT-CLEAN-<br>BYP   | Clean Systems Passive Filter Bypass                                       | EPIX/RADS     | 0        | 8,161,140        | h      | 68         | Gamma                                                              | JNID/IL          | 2.41E-10 | 2.79E-08 | 6.13E-08 | 2.35E-07 | 0.500  | 8.160E+06 | 8.4                      | 200620     |
|       |                                    | FLT-PG-IAS              | Instrument Air System Filter Plugs                                        | EPIX/RADS     | 0        | 210,384          | h      | 2          | Gamma                                                              | JNID/IL          | 9.36E-09 | 1.08E-06 | 2.38E-06 | 9.15E-06 | 0.500  | 2.100E+05 | 8.4                      | 200620     |
|       |                                    | STR-FLTSC-PG            | Self Cleaning Filter Plugging                                             | EPIX/RADS     | 32       | 21,560,060       | h      | 167        | Gamma                                                              | JNID/IL          | 1.10E-06 | 1.49E-06 | 1.51E-06 | 1.96E-06 | 32.500 | 2.160E+07 | 1.3                      | 200620     |
|       |                                    | STR-FLTSC-BYP           | Self Cleaning Filter Bypass                                               | EPIX/RADS     | 0        | 21,560,060       | h      | 167        | Gamma                                                              | JNID/IL          | 9.10E-11 | 1.05E-08 | 2.32E-08 | 8.89E-08 | 0.500  | 2.160E+07 | 8.4                      | 200620     |
|       |                                    | STR-FLTSC-FTOP          | Self Cleaning Filter Fails To Operate                                     | EPIX/RADS     | 53       | 21,560,060       | h      | 167        | Gamma                                                              | JNID/IL          | 1.95E-06 | 2.46E-06 | 2.48E-06 | 3.06E-06 | 53.500 | 2.160E+07 | 1.2                      | 200620     |
|       |                                    | STR-FLTSC-ELS           | Self Cleaning Filter External Leakage<br>(Small)                          | EPIX/RADS     | 2        | 21,560,060       | h      | 167        | Gamma                                                              | JNID/IL          | 2.65E-08 | 1.01E-07 | 1.16E-07 | 2.56E-07 | 2.500  | 2.160E+07 | 2.5                      | 200620     |
|       | Self-Cleaning Strainer<br>(FLTSC)  | STR-FLTSC-ELL           | Self Cleaning Filter External Leakage<br>(Rupture)                        | NUREG/CR-6928 | (note c) |                  | h      | 167        | Gamma                                                              | JNID/IL          | 8.69E-13 | 1.98E-09 | 8.12E-09 | 3.71E-08 | 0.300  | 3.695E+07 | 18.8                     | 200620     |
|       |                                    | STR-FLTSC-PG-<br>SWN    | Normally Running Service Water Strainer<br>Plugs                          | EPIX/RADS     | 19       | 13,235,010       | h      | 103        | Gamma                                                              | JNID/IL          | 9.73E-07 | 1.45E-06 | 1.47E-06 | 2.07E-06 | 19.500 | 1.320E+07 | 1.4                      | 200620     |
|       |                                    | STR-FLTSC-PG-<br>SSW    | Standby Service Water Strainer Plugs                                      | EPIX/RADS     | 13       | 7,799,060        | h      | 60         | Gamma                                                              | JNID/IL          | 1.04E-06 | 1.69E-06 | 1.73E-06 | 2.57E-06 | 13.500 | 7.800E+06 | 1.5                      | 20062      |
|       |                                    | STR-FLTSC-PG-<br>EE-SSW | Standby Service Water Strainer Plugging,<br>Environmental                 | EPIX/RADS     | 1        | 7,799,060        | h      | 60         | Gamma                                                              | JNID/IL          | 2.26E-08 | 1.52E-07 | 1.92E-07 | 5.01E-07 | 1.500  | 7.800E+06 | 3.3                      | 20062      |
|       | Sump Strainer (SMP)                | STR-PG-SUMP-<br>BWR     | Containment Sump Plugging (BWRs, suppression pool strainers)              | EPIX/RADS     | 0        | 5,522,832        | h      | 42         | Gamma                                                              | JNID/IL          | 3.56E-10 | 4.12E-08 | 9.05E-08 | 3.48E-07 | 0.500  | 5.520E+06 | 8.4                      | 200620     |
|       |                                    | STR-PG-SUMP-<br>PWR     | Containment Sump Plugging (PWRs)                                          | EPIX/RADS     | 1        | 3,528,454        | h      | 29         | Gamma                                                              | JNID/IL          | 4.98E-08 | 3.35E-07 | 4.25E-07 | 1.11E-06 | 1.500  | 3.530E+06 | 3.3                      | 200620     |
|       |                                    | TSA-PG                  | Traveling Screen Plugging                                                 | EPIX/RADS     | 37       | 25,155,920       | h      | 205        | Gamma                                                              | JNID/IL          | 1.11E-06 | 1.47E-06 | 1.49E-06 | 1.91E-06 | 37.500 | 2.520E+07 | 1.3                      | 200620     |
|       | Traveling Screen<br>Assembly (TSA) | TSA-BYP                 | Traveling Screen Bypass                                                   | EPIX/RADS     | 2        | 25,155,920       | h      | 205        | Gamma                                                              | JNID/IL          | 2.27E-08 | 8.63E-08 | 9.94E-08 | 2.20E-07 | 2.500  | 2.520E+07 | 2.5                      | 200620     |
|       |                                    | TSA-FTOP                | Traveling Screen Fails To Operate                                         | EPIX/RADS     | 45       | 25,155,920       | h      | 205        | Gamma                                                              | EB/PL/KS         | 1.30E-08 | 1.04E-06 | 2.12E-06 | 7.86E-06 | 0.547  | 2.590E+05 | 7.6                      | 200620     |

| Grouping  |                                  | Component Failure | Description                                                    | Data Source   | Data     |                  |        |            | Industry-average Failure Probability or Rate Distribution (note a) |                  |          |          |          |          |        |           |                          |            |
|-----------|----------------------------------|-------------------|----------------------------------------------------------------|---------------|----------|------------------|--------|------------|--------------------------------------------------------------------|------------------|----------|----------|----------|----------|--------|-----------|--------------------------|------------|
|           | Component Type                   | Mode              |                                                                |               | Failures | Demands or Hours | d or h | Components | Distribution                                                       | Analysis<br>Type | 5th      | Median   | Mean     | 95th     | α      | β         | Error Factor<br>(note b) | Date Range |
|           |                                  | TSA-PG-SSW        | Standby Service Water Traveling Screen<br>Plugs                | EPIX/RADS     | 0        | 1,972,440        | h      | 15         | Gamma                                                              | JNID/IL          | 9.98E-10 | 1.15E-07 | 2.53E-07 | 9.75E-07 | 0.500  | 1.970E+06 | 8.4                      | 20062020   |
|           | Trash Rack (TRK)                 | TRK-PG            | Trash Rack Plugging                                            | EPIX/RADS     | 0        | 1,314,960        | h      | 10         | Gamma                                                              | JNID/IL          | 1.50E-09 | 1.74E-07 | 3.80E-07 | 1.47E-06 | 0.500  | 1.310E+06 | 8.4                      | 20062020   |
|           | Bistable (BIS)                   | BIS-FTOP          | Bistable Fails To Operate                                      | RPS SSs       | 55       | 102,094          | d      |            | Beta                                                               | JNID/IL          | 2.14E-06 | 2.47E-04 | 5.44E-04 | 2.09E-03 | 0.500  | 9.193E+02 | 8.4                      |            |
|           |                                  | PLF-FTOP          | Process Logic (Flow) Fails To Operate                          | RPS SSs       | (note d) | 6,075            | d      |            | Beta                                                               | JNID/IL          | 2.46E-06 | 2.85E-04 | 6.25E-04 | 2.40E-03 | 0.500  | 7.990E+02 | 8.4                      |            |
|           | Process Logic<br>Components      | PLL-FTOP          | Process Logic (Level) Fails To Operate                         | RPS SSs       | 3        | 6.075            | d      |            | Beta                                                               | JNID/IL          | 2.46E-06 | 2.85E-04 | 6.25E-04 | 2.40E-03 | 0.500  | 7.990E+02 | 8.4                      |            |
|           |                                  | PLP-FTOP          | Process Logic (Pressure) Fails To Operate                      | RPS SSs       | 6        | 38.115           | d      |            | Beta                                                               | JNID/IL          | 6.29E-07 | 7.28E-05 | 1.60E-04 | 6.15E-04 | 0.500  | 3.124E+03 | 8.4                      |            |
|           |                                  | PLDT-FTOP         | Process Logic (Delta Temperature) Fails<br>To Operate          | RPS SSs       | 24       | 4,887            | d      |            | Beta                                                               | JNID/IL          | 2.01E-05 | 2.32E-03 | 5.07E-03 | 1.94E-02 | 0.500  | 9.805E+01 | 8.4                      |            |
|           |                                  | STF-FTOP-D        | Sensor/Transmitter (Flow) Fails To<br>Operate on Demand        | RPS SSs       | (note d) | 6,750            | d      |            | Beta                                                               | JNID/IL          | 3.21E-06 | 3.71E-04 | 8.15E-04 | 3.13E-03 | 0.500  | 6.132E+02 | 8.4                      |            |
|           |                                  | STF-FTOP-R        | Sensor/Transmitter (Flow) Fails To<br>Operate per Hour         | RPS SSs       | (note d) | 9,831,970        | h      |            | Gamma                                                              | JNID/IL          | 4.00E-10 | 4.63E-08 | 1.02E-07 | 3.91E-07 | 0.500  | 4.916E+06 | 8.4                      |            |
|           | Sensor/Transmitter<br>Components | STL-FTOP-D        | Sensor/Transmitter (Level) Fails To<br>Operate on Demand       | RPS SSs       | 5        | 6,750            | d      |            | Beta                                                               | JNID/IL          | 3.21E-06 | 3.71E-04 | 8.15E-04 | 3.13E-03 | 0.500  | 6.132E+02 | 8.4                      |            |
|           |                                  | STL-FTOP-R        | Sensor/Transmitter (Level) Fails To<br>Operate per Hour        | RPS SSs       | 0        | 9,831,970        | h      |            | Gamma                                                              | JNID/IL          | 4.00E-10 | 4.63E-08 | 1.02E-07 | 3.91E-07 | 0.500  | 4.916E+06 | 8.4                      |            |
| RPS       |                                  | STP-FTOP-D        | Sensor/Transmitter (Pressure) Fails To<br>Operate on Demand    | RPS SSs       | 2        | 23,960           | d      |            | Beta                                                               | JNID/IL          | 4.60E-07 | 5.32E-05 | 1.17E-04 | 4.49E-04 | 0.500  | 4.278E+03 | 8.4                      |            |
| -         |                                  | STP-FTOP-R        | Sensor/Transmitter (Pressure) Fails To<br>Operate per Hour     | RPS SSs       | 35       | 43,430,500       | h      |            | Gamma                                                              | JNID/IL          | 3.23E-09 | 3.74E-07 | 8.22E-07 | 3.16E-06 | 0.500  | 6.083E+05 | 8.4                      |            |
|           |                                  | STT-FTOP-D        | Sensor/Transmitter (Temperature) Fails To<br>Operate on Demand | RPS SSs       | 17       | 40,759           | d      |            | Beta                                                               | JNID/IL          | 1.70E-06 | 1.97E-04 | 4.32E-04 | 1.66E-03 | 0.500  | 1.157E+03 | 8.4                      |            |
|           |                                  | STT-FTOP-R        | Sensor/Transmitter (Temperature) Fails To<br>Operate per Hour  | RPS SSs       | 29       | 35,107,400       | h      |            | Gamma                                                              | JNID/IL          | 3.30E-09 | 3.82E-07 | 8.40E-07 | 3.23E-06 | 0.500  | 5.950E+05 | 8.4                      |            |
|           | Reactor Trip Breaker<br>(RTB)    | RTB-FTOC-BME      | RPS Breaker (Mechanical) Fails To<br>Open/Close                | RPS SSs       | 1        | 97.359           | d      |            | Beta                                                               | JNID/IL          | 6.06E-08 | 7.01E-06 | 1.54E-05 | 5.92E-05 | 0.500  | 3.245E+04 | 8.4                      |            |
|           |                                  | RTB-FTOP-BSN      | RPS Breaker (Shunt Trip) Fails To Operate                      | RPS SSs       | 14       | 44,104           | d      |            | Beta                                                               | JNID/IL          | 1.29E-06 | 1.50E-04 | 3.29E-04 | 1.26E-03 | 0.500  | 1.520E+03 | 8.4                      |            |
|           |                                  | RTB-FTOP-BUV      | RPS Breaker (Undervoltage Trip) Fails To<br>Operate            | RPS SSs       | 23       | 57,199           | d      |            | Beta                                                               | JNID/IL          | 1.62E-06 | 1.88E-04 | 4.13E-04 | 1.58E-03 | 0.500  | 1.211E+03 | 8.4                      |            |
|           |                                  | RTB-FTOC          | RPS Breaker (Combined) Fails To<br>Open/Close                  | RPS SSs       |          |                  | d      |            | Beta                                                               | JNID/IL          | 6.11E-08 | 7.07E-06 | 1.55E-05 | 5.97E-05 | 0.500  | 3.217E+04 | 8.4                      |            |
|           | Manual Switch (MSW)              | MSW-FTOC          | Manual Switch Fails To Open/Close                              | RPS SSs       | 2        | 19,789           | d      |            | Beta                                                               | JNID/IL          | 4.97E-07 | 5.75E-05 | 1.26E-04 | 4.85E-04 | 0.500  | 3.958E+03 | 8.4                      |            |
|           | Relay (RLY)                      | RLY-FTOP          | Relay Fails To Operate                                         | RPS SSs       | 24       | 974,417          | d      |            | Beta                                                               | JNID/IL          | 9.77E-08 | 1.13E-05 | 2.48E-05 | 9.54E-05 | 0.500  | 2.013E+04 | 8.4                      |            |
|           | Control Rod Drive (CRD)          | CRD-FTOP          | Control Rod Drive Fails To Insert Rod                          | EPIX/RADS     | 19       | 145,016,900      | d      | 1198       | Gamma                                                              | EB/PL/KS         | 1.16E-09 | 8.38E-08 | 1.68E-07 | 6.18E-07 | 0.560  | 3.340E+06 | 7.4                      | 20062020   |
|           |                                  | CRD-SOP           | Control Rod Drive Spurious Operation                           | EPIX/RADS     | 23       | 145,016,900      | h      | 1198       | Gamma                                                              | JNID/IL          | 1.11E-07 | 1.60E-07 | 1.62E-07 | 2.21E-07 | 23.500 | 1.450E+08 | 1.4                      | 20062020   |
| Rods      | Control Rod (ROD)                | ROD-FTOP          | Control Rod Fails To Operate/ Insert Rod                       | EPIX/RADS     | 10       | 110,389,200      | d      | 844        | Gamma                                                              | JNID/IL          | 5.27E-08 | 9.24E-08 | 9.51E-08 | 1.49E-07 | 10.500 | 1.100E+08 | 1.6                      | 20062020   |
| ntroll    |                                  | ROD-SOP           | Control Rod Spurious Operation                                 | EPIX/RADS     | 11       | 110,389,200      | h      | 844        | Gamma                                                              | JNID/IL          | 5.95E-08 | 1.02E-07 | 1.04E-07 | 1.60E-07 | 11.500 | 1.100E+08 | 1.6                      | 20062020   |
| S         |                                  | HCU-FTI           | Hydraulic Control Unit Components Fail                         | RPS SSs       |          |                  | d      |            | Lognormal                                                          |                  | 1.05E-09 | 2.10E-08 | 1.10E-07 | 4.19E-07 | 20.000 |           | 20.0                     |            |
|           | Hydraulic Control Unit<br>(HCU)  | HCU-FTOP          | Hydraulic Control Unit Fails To Operate                        | EPIX/RADS     | 19       | 1,347,114,000    | h      | 10425      | Gamma                                                              | JNID/IL          | 9.52E-09 | 1.42E-08 | 1.45E-08 | 2.02E-08 | 19.500 | 1.350E+09 | 1.4                      | 20062020   |
|           |                                  | HCU-SOP           | Hydraulic Control Unit Spurious Operation                      | EPIX/RADS     | 27       | 1,347,114,000    | h      | 10425      | Gamma                                                              | EB/PL/KS         | 7.14E-09 | 1.84E-08 | 1.99E-08 | 3.79E-08 | 4.300  | 2.160E+08 | 2.1                      | 20062020   |
|           |                                  | AOD-FTOC          | Air-Operated Damper Fails To Open/Close                        | EPIX/RADS     | 0        | 6,602            | d      | 50         | Beta                                                               | JNID/IL          | 2.98E-07 | 3.45E-05 | 7.57E-05 | 2.91E-04 | 0.500  | 6.600E+03 | 8.4                      | 20062020   |
|           |                                  | AOD-SOP           | Air-Operated Damper Spurious Operation                         | EPIX/RADS     | 4        | 24,287,000       | h      | 207        | Gamma                                                              | EB/PL/KS         | 1.29E-09 | 8.25E-08 | 1.61E-07 | 5.86E-07 | 0.579  | 3.600E+06 | 7.1                      | 20062020   |
| Ę         |                                  | AOD-ILS           | Air-Operated Damper Internal Leakage (Small)                   | EPIX/RADS     | 3        | 24,287,000       | h      | 207        | Gamma                                                              | JNID/IL          | 4.46E-08 | 1.31E-07 | 1.44E-07 | 2.89E-07 | 3.500  | 2.430E+07 | 2.2                      | 20062020   |
| entilatic |                                  | AOD-ILL           | Air-Operated Damper Internal Leakage<br>(Rupture)              | NUREG/CR-6928 | (note c) |                  | h      | 207        | Gamma                                                              | JNID/IL          | 3.08E-13 | 7.02E-10 | 2.88E-09 | 1.32E-08 | 0.300  | 1.042E+08 | 18.8                     | 20062020   |
| 8 V       | Air Damper (DMP)                 | HOD-FTOC          | Hydraulic-Operated Damper Fails To<br>Open/Close               | EPIX/RADS     | 4        | 6,113            | d      | 42         | Beta                                                               | JNID/IL          | 2.72E-04 | 6.82E-04 | 7.36E-04 | 1.38E-03 | 4.500  | 6.110E+03 | 2.0                      | 20062020   |
| Heatin    |                                  | HOD-SOP           | Hydraulic-Operated Damper Spurious<br>Operation                | EPIX/RADS     | 2        | 16,454,520       | h      | 126        | Gamma                                                              | JNID/IL          | 3.47E-08 | 1.32E-07 | 1.52E-07 | 3.35E-07 | 2.500  | 1.650E+07 | 2.5                      | 20062020   |
| -         |                                  | HOD-ILS           | Hydraulic-Operated Damper Internal<br>Leakage (Small)          | EPIX/RADS     | 0        | 16,454,520       | h      | 126        | Gamma                                                              | JNID/IL          | 1.19E-10 | 1.38E-08 | 3.04E-08 | 1.16E-07 | 0.500  | 1.650E+07 | 8.4                      | 20062020   |
|           |                                  | HOD-ILL           | Hydraulic-Operated Damper Internal<br>Leakage (Rupture)        | NUREG/CR-6928 | (note c) |                  | h      | 126        | Gamma                                                              | JNID/IL          | 6.51E-14 | 1.48E-10 | 6.08E-10 | 2.78E-09 | 0.300  | 4.934E+08 | 18.8                     | 20062020   |

|                      | Component Failure |                                                                     |               |          | Data             |        |            |              |                  | Industr  | ry-average Failure | Probability or Rate | e Distribution (n | ote a) |           |                          |           |
|----------------------|-------------------|---------------------------------------------------------------------|---------------|----------|------------------|--------|------------|--------------|------------------|----------|--------------------|---------------------|-------------------|--------|-----------|--------------------------|-----------|
| Component Type       | Mode              | Description                                                         | Data Source   | Failures | Demands or Hours | d or h | Components | Distribution | Analysis<br>Type | 5th      | Median             | Mean                | 95th              | α      | β         | Error Factor<br>(note b) | Date Rang |
|                      | MOD-FTOC          | Motor-Operated Damper Fails To Open                                 | EPIX/RADS     | 11       | 28,949           | d      | 52         | Beta         | EB/PL/KS         | 1.74E-05 | 2.44E-04           | 3.56E-04            | 1.07E-03          | 0.981  | 2.760E+03 | 4.4                      | 2006202   |
|                      | MOD-SOP           | Motor-Operated Damper Spurious<br>Operation                         | EPIX/RADS     | 0        | 14,134,270       | h      | 109        | Gamma        | JNID/IL          | 1.39E-10 | 1.61E-08           | 3.54E-08            | 1.36E-07          | 0.500  | 1.410E+07 | 8.4                      | 2006202   |
|                      | MOD-ILS           | Motor-Operated Damper Internal Leakage<br>(Small)                   | EPIX/RADS     | 0        | 14,134,270       | d      | 109        | Gamma        | JNID/IL          | 1.39E-10 | 1.61E-08           | 3.54E-08            | 1.36E-07          | 0.500  | 1.410E+07 | 8.4                      | 2006202   |
|                      | MOD-ILL           | Motor-Operated Damper Internal Leakage<br>(Rupture)                 | NUREG/CR-6928 | (note c) |                  | h      | 109        | Gamma        | JNID/IL          | 7.58E-14 | 1.73E-10           | 7.08E-10            | 3.24E-09          | 0.300  | 4.237E+08 | 18.8                     | 200620    |
|                      | AHU-FTS-NR        | Air Handling Unit Fails To Start, Normally<br>Running               | EPIX/RADS     | 23       | 15,981           | d      | 145        | Beta         | JNID/IL          | 1.01E-03 | 1.45E-03           | 1.47E-03            | 2.00E-03          | 23.500 | 1.600E+04 | 1.4                      | 200620    |
|                      | AHU-FTR-NR        | Air Handling Unit Fails To Run, Normally<br>Running                 | EPIX/RADS     | 39       | 15,131,330       | h      | 145        | Gamma        | JNID/IL          | 1.97E-06 | 2.59E-06           | 2.61E-06            | 3.34E-06          | 39.500 | 1.510E+07 | 1.3                      | 20062     |
| Air Handling         | AHU-FTS-NS        | Air Handling Unit Fails To Start, Normally Standby                  | EPIX/RADS     | 33       | 158,866          | d      | 403        | Beta         | JNID/IL          | 1.55E-04 | 2.09E-04           | 2.11E-04            | 2.74E-04          | 33.500 | 1.590E+05 | 1.3                      | 20062     |
|                      | AHU-FTR<1H        | Air Handling Unit Fails To Run <1H,<br>Normally Standby             | EPIX/RADS     | 0        | 147,963          | h      | 395        | Gamma        | JNID/IL          | 1.33E-08 | 1.54E-06           | 3.38E-06            | 1.30E-05          | 0.500  | 1.480E+05 | 8.4                      | 20062     |
|                      | AHU-FTR>1H        | Air Handling Unit Fails To Run >1H,<br>Normally Standby             | EPIX/RADS     | 27       | 9,928,068        | h      | 403        | Gamma        | JNID/IL          | 1.96E-06 | 2.74E-06           | 2.77E-06            | 3.69E-06          | 27.500 | 9.930E+06 | 1.3                      | 20062     |
|                      | CHL-FTS-NR        | Chiller Unit Fails To Start, Normally<br>Running                    | EPIX/RADS     | 66       | 21,137           | d      | 92         | Beta         | EB/PL/KS         | 9.52E-06 | 2.05E-03           | 5.09E-03            | 2.05E-02          | 0.438  | 8.560E+01 | 10.0                     | 20062     |
|                      | CHL-FTR-NR        | Chiller Unit Fails To Run, Normally<br>Running                      | EPIX/RADS     | 179      | 7,250,769        | h      | 92         | Gamma        | EB/PL/KS         | 1.94E-07 | 1.84E-05           | 3.87E-05            | 1.47E-04          | 0.524  | 1.350E+04 | 8.0                      | 20062     |
| Chiller (CHL)        | CHL-FTS-NS        | Chiller Unit Fails To Start, Normally<br>Standby                    | EPIX/RADS     | 0        | 18,006           | d      | 64         | Beta         | JNID/IL          | 1.09E-07 | 1.26E-05           | 2.78E-05            | 1.07E-04          | 0.500  | 1.800E+04 | 8.4                      | 20062     |
|                      | CHL-FTR<1H        | Chiller Unit Fails To Run <1H, Normally<br>Standby                  | EPIX/RADS     | 34       | 233,781          | h      | 64         | Gamma        | JNID/IL          | 1.09E-04 | 1.46E-04           | 1.48E-04            | 1.91E-04          | 34.500 | 2.340E+05 | 1.3                      | 20062     |
|                      | CHL-FTR>1H        | Chiller Unit Fails To Run >1H, Normally<br>Standby                  | EPIX/RADS     | 34       | 233,781          | h      | 64         | Gamma        | JNID/IL          | 1.09E-04 | 1.46E-04           | 1.48E-04            | 1.91E-04          | 34.500 | 2.340E+05 | 1.3                      | 20062     |
|                      | FAN-FTS-NS        | HVC Fan Fails To Start, Normally<br>Standby                         | EPIX/RADS     | 17       | 63.511           | d      | 154        | Beta         | JNID/IL          | 1.77E-04 | 2.70E-04           | 2.76E-04            | 3.92E-04          | 17.500 | 6.350E+04 | 1.5                      | 2006      |
|                      | FAN-FTR<1H        | HVC Fan FTR<1H, Normally Standby                                    | EPIX/RADS     | 17       | 39,405           | h      | 133        | Gamma        | JNID/IL          | 2.85E-04 | 4.36E-04           | 4.44E-04            | 6.32E-04          | 17.500 | 3.940E+04 | 1.5                      | 2006      |
| Fan (FAN)            | FAN-FTR>1H        | HVC Fan FTR>1H, Normally Standby                                    | EPIX/RADS     | 3        | 120,200          | h      | 154        | Gamma        | JNID/IL          | 9.03E-06 | 2.64E-05           | 2.91E-05            | 5.86E-05          | 3.500  | 1.200E+05 | 2.2                      | 20062     |
|                      | FAN-FTS-NR        | HVC Fan Fails To Start, Normally<br>Running                         | EPIX/RADS     | 28       | 87,323           | d      | 233        | Beta         | EB/PL/KS         | 1.69E-06 | 2.99E-04           | 7.15E-04            | 2.84E-03          | 0.456  | 6.360E+02 | 9.5                      | 2006      |
|                      | FAN-FTR-NR        | HVC Fan Fails To Run, Normally Running                              | EPIX/RADS     | 50       | 16,050,850       | h      | 233        | Gamma        | EB/PL/KS         | 4.87E-08 | 1.83E-06           | 3.23E-06            | 1.11E-05          | 0.674  | 2.090E+05 | 6.1                      | 2006      |
|                      | MDC-FTS-NR        | Motor-Driven Compressor Fails To Start,<br>Normally Running         | EPIX/RADS     | 52       | 7,855            | d      | 65         | Beta         | EB/PL/KS         | 3.28E-05 | 5.78E-03           | 1.36E-02            | 5.36E-02          | 0.456  | 3.310E+01 | 9.3                      | 2006      |
|                      | MDC-FTR-NR        | Motor-Driven Compressor Fails To Run                                | EPIX/RADS     | 173      | 4,802,083        | h      | 65         | Gamma        | EB/PL/KS         | 9.92E-06 | 3.54E-05           | 4.03E-05            | 8.72E-05          | 2.690  | 6.680E+04 | 2.5                      | 2006      |
|                      | MDC-FTS-NS        | Motor-Driven Compressor Fails To Start,<br>Normally Standby         | EPIX/RADS     | 34       | 21,074           | d      | 57         | Beta         | EB/PL/KS         | 9.56E-05 | 1.89E-03           | 2.93E-03            | 9.27E-03          | 0.847  | 2.890E+02 | 4.9                      | 20062     |
|                      | MDC-FTR<1H        | Motor-Driven Compressor Fails To Run (0<br>To 1 Hour)               | EPIX/RADS     | 1        | 20,248           | h      | 54         | Gamma        | JNID/IL          | 8.71E-06 | 5.86E-05           | 7.41E-05            | 1.93E-04          | 1.500  | 2.020E+04 | 3.3                      | 2006      |
|                      | MDC-FTR>1H        | Motor-Driven Compressor Fails To Run (><br>1 Hour)                  | EPIX/RADS     | 90       | 1,573,366        | h      | 57         | Gamma        | JNID/IL          | 4.81E-05 | 5.74E-05           | 5.75E-05            | 6.80E-05          | 90.500 | 1.570E+06 | 1.2                      | 20062     |
| Air Compressor (CMP) | EDC-FTS-NS        | Engine-Driven Compressor Fails To Start,<br>Normally Standby        | EPIX/RADS     | 14       | 1,459            | d      | 4          | Beta         | JNID/IL          | 6.06E-03 | 9.68E-03           | 9.93E-03            | 1.45E-02          | 14.500 | 1.450E+03 | 1.5                      | 20062     |
|                      | EDC-FTR<1H        | Engine-Driven Compressor Fails To Run<br><1H, Normally Standby      | EPIX/RADS     | 1        | 1,459            | h      | 4          | Gamma        | JNID/IL          | 1.20E-04 | 8.10E-04           | 1.03E-03            | 2.68E-03          | 1.500  | 1.460E+03 | 3.3                      | 2006      |
|                      | EDC-FTR>1H        | Engine-Driven Compressor Fails To Run<br>>1H, Normally Standby      | EPIX/RADS     | 12       | 1,609            | h      | 4          | Gamma        | JNID/IL          | 4.54E-03 | 7.56E-03           | 7.77E-03            | 1.17E-02          | 12.500 | 1.610E+03 | 1.5                      | 2006      |
|                      | EDC-FTR-NR        | Engine-Driven Compressor Fails To Run,<br>Normally Running          | EPIX/RADS     | 10       | 163,321          | d      | 3          | Gamma        | JNID/IL          | 3.56E-05 | 6.24E-05           | 6.43E-05            | 1.00E-04          | 10.500 | 1.630E+05 | 1.6                      | 2006      |
|                      | MDC-FTR-IAS       | Instrument Air System Motor-Driven<br>Compressor Fails To Run       | EPIX/RADS     | 117      | 2,376,803        | h      | 36         | Gamma        | EB/PL/KS         | 2.41E-05 | 4.73E-05           | 4.93E-05            | 8.22E-05          | 7.620  | 1.540E+05 | 1.7                      | 2006      |
|                      | MDC-FTR-CIA       | Containment Instrument Air Motor-<br>Driven Compressor Fails To Run | EPIX/RADS     | 0        | 98,561           | h      | 2          | Gamma        | JNID/IL          | 1.99E-08 | 2.31E-06           | 5.07E-06            | 1.95E-05          | 0.500  | 9.860E+04 | 8.4                      | 2006      |
| Air Dryer Unit (ADU) | ADU-FTOP          | Air dryer unit fails To operate                                     | WSRC          |          |                  | h      | 0          | Gamma        | JNID/IL          | 5.35E-10 | 1.22E-06           | 5.00E-06            | 2.29E-05          | 0.300  | 6.000E+04 | 18.8                     |           |
|                      | ACC-FTOP          | Accumulator Fails To Operate                                        | EPIX/RADS     | 11       | 79,315,180       | h      | 617        | Gamma        | JNID/IL          | 8.25E-08 | 1.41E-07           | 1.45E-07            | 2.22E-07          | 11.500 | 7.930E+07 | 1.6                      | 20062     |
| Accumulator (ACC)    | ACC-ELS           | Accumulator External Leakage (Small)                                | EPIX/RADS     | 8        | 79,315,180       | h      | 617        | Gamma        | JNID/IL          | 5.47E-08 | 1.03E-07           | 1.07E-07            | 1.74E-07          | 8.500  | 7.930E+07 | 1.7                      | 20062     |
|                      | ACC-ELL           | Accumulator External Leakage (Rupture)                              | NUREG/CR-6928 | (note c) |                  | h      | 617        | Gamma        | JNID/IL          | 8.02E-13 | 1.83E-09           | 7.49E-09            | 3.43E-08          | 0.300  | 4.005E+07 | 18.8                     | 20062     |

|                        | Component Failure       |                                                                       |               |          | Data             |        |            |              |                  | Indust   | ry-average Failure | Probability or Rat | e Distribution (n | ote a) |           |                          |            |
|------------------------|-------------------------|-----------------------------------------------------------------------|---------------|----------|------------------|--------|------------|--------------|------------------|----------|--------------------|--------------------|-------------------|--------|-----------|--------------------------|------------|
| Component Type         | Mode                    | Description                                                           | Data Source   | Failures | Demands or Hours | d or h | Components | Distribution | Analysis<br>Type | 5th      | Median             | Mean               | 95th              | α      | β         | Error Factor<br>(note b) | Date Range |
|                        | CTF-FTS-NS              | Cooling Tower Fan Fails To Start<br>(Standby)                         | EPIX/RADS     | 14       | 37,307           | d      | 55         | Beta         | JNID/IL          | 2.37E-04 | 3.80E-04           | 3.89E-04           | 5.70E-04          | 14.500 | 3.730E+04 | 1.5                      | 2006202    |
|                        | CTF-FTR<1H              | Cooling Tower Fan Fails To Run <1H<br>(Standby)                       | EPIX/RADS     | 0        | 37,231           | h      | 54         | Gamma        | JNID/IL          | 5.29E-08 | 6.11E-06           | 1.34E-05           | 5.16E-05          | 0.500  | 3.720E+04 | 8.4                      | 2006202    |
| Cooling Tower Fan (CTI | ) CTFFTR>1H             | Cooling Tower Fan Fails To Run >1H<br>(Standby)                       | EPIX/RADS     | 0        | 895,323          | h      | 55         | Gamma        | JNID/IL          | 2.20E-09 | 2.54E-07           | 5.58E-07           | 2.15E-06          | 0.500  | 8.950E+05 | 8.4                      | 2006202    |
|                        | CTF-FTS-NR              | Cooling Tower Fan Fails To Start                                      | EPIX/RADS     | 1        | 2,239            | d      | 20         | Beta         | JNID/IL          | 7.85E-05 | 5.28E-04           | 6.70E-04           | 1.74E-03          | 1.500  | 2.240E+03 | 3.3                      | 200620     |
|                        | CTF-FTR-NR              | Cooling Tower Fan Fails To Run                                        | EPIX/RADS     | 6        | 1,253,930        | h      | 20         | Gamma        | JNID/IL          | 2.36E-06 | 4.94E-06           | 5.18E-06           | 8.94E-06          | 6.500  | 1.250E+06 | 1.8                      | 200620     |
|                        | TNK-FC                  | Tank Rupture                                                          | EPIX/RADS     | 16       | 46,469,300       | h      | 383        | Gamma        | EB/PL/KS         | 5.99E-10 | 1.61E-07           | 4.18E-07           | 1.72E-06          | 0.420  | 1.000E+06 | 10.7                     | 200620     |
|                        | TNK-PRESS-LIQ-<br>ELS   | Pressurized Liquid Tank Small Leakage<br>External Leakage (Small)     | EPIX/RADS     | 5        | 19,535,510       | h      | 156        | Gamma        | EB/PL/KS         | 8.76E-10 | 1.12E-07           | 2.51E-07           | 9.71E-07          | 0.489  | 1.950E+06 | 8.7                      | 200620     |
|                        | TNK-PRESS-LIQ-<br>ELL   | Pressurized Liquid Tank Small Leakage<br>External Leakage (Rupture)   | NUREG/CR-6928 | (note c) |                  | h      | 156        | Gamma        | EB/PL/KS         | 1.88E-12 | 4.28E-09           | 1.76E-08           | 8.04E-08          | 0.300  | 1.707E+07 | 18.8                     | 200620     |
|                        | TNK-UNPRESS-<br>LIQ-ELS | Unpressurized Liquid Tank Small Leakage<br>External Leakage (Small)   | EPIX/RADS     | 4        | 22,725,910       | h      | 195        | Gamma        | JNID/IL          | 7.32E-08 | 1.84E-07           | 1.98E-07           | 3.73E-07          | 4.500  | 2.270E+07 | 2.0                      | 20062      |
| Tank (TNK)             | TNK-UNPRESS-<br>LIQ-ELL | Unpressurized Liquid Tank Small Leakage<br>External Leakage (Rupture) | NUREG/CR-6928 | (note c) |                  | h      | 195        | Gamma        | JNID/IL          | 1.48E-12 | 3.38E-09           | 1.39E-08           | 6.34E-08          | 0.300  | 2.165E+07 | 18.8                     | 20062      |
|                        | TNK-FC-IAS              | Instrument Air System Tank Fails To<br>Control                        | EPIX/RADS     | 0        | 3,287,400        | h      | 25         | Gamma        | JNID/IL          | 5.98E-10 | 6.91E-08           | 1.52E-07           | 5.84E-07          | 0.500  | 3.290E+06 | 8.4                      | 20062      |
|                        | TNK-FC-SWS              | Standby Service Water Tank Fails To<br>Control                        | EPIX/RADS     | 0        | 880,966          | h      | 7          | Gamma        | JNID/IL          | 2.23E-09 | 2.58E-07           | 5.68E-07           | 2.18E-06          | 0.500  | 8.810E+05 | 8.4                      | 20062      |
|                        | TNK-GAS-ELS             | Gas Tank Small Leakage External Leakage (Small)                       | EPIX/RADS     | 0        | 4,207,872        | h      | 32         | Gamma        | JNID/IL          | 4.67E-10 | 5.40E-08           | 1.19E-07           | 4.56E-07          | 0.500  | 4.210E+06 | 8.4                      | 20062      |
|                        | TNK-GAS-ELL             | Gas Tank Small Leakage External Leakage<br>(Rupture)                  | NUREG/CR-6928 | (note c) |                  | h      | 32         | Gamma        | JNID/IL          | 8.92E-13 | 2.03E-09           | 8.33E-09           | 3.81E-08          | 0.300  | 3.601E+07 | 18.8                     | 20062      |
| Orifice (ORF)          | ORF-PG                  | Orifice Plugging                                                      | WSRC          |          |                  | h      | 0          | Gamma        | JNID/IL          | 1.07E-10 | 2.44E-07           | 1.00E-06           | 4.57E-06          | 0.300  | 3.000E+05 | 18.8                     |            |
|                        | PIPE-OTHER-ELS          | Piping Non-Service Water System<br>External Leak Small                | EPIX          | 5        | 15,830,000,000   | h-ft   | 0          | Gamma        | JNID/IL          | 9.94E-13 | 1.15E-10           | 2.53E-10           | 9.71E-10          | 0.500  | 1.979E+09 | 8.4                      |            |
|                        | PIPE-OTHER-ELL          | Piping Non-Service Water System<br>External Leak Large                | NUREG/CR-6928 | (note c) | 15,830,000,000   | h-ft   | 0          | Gamma        | JNID/IL          | 2.70E-15 | 6.16E-12           | 2.53E-11           | 1.16E-10          | 0.300  | 1.187E+10 | 18.8                     |            |
| Pipe (PIPE)            | PIPE-SWS-ELS            | Piping Service Water System External<br>Leak Small                    | EPIX          | 9        | 13,060,000,000   | h-ft   | 0          | Gamma        | JNID/IL          | 2.71E-12 | 3.14E-10           | 6.89E-10           | 2.65E-09          | 0.500  | 7.256E+08 | 8.4                      |            |
|                        | PIPE-SWS-ELL            | Piping Service Water System External<br>Leak Large                    | NUREG/CR-6928 | (note c) | 13,060,000,000   | h-ft   | 0          | Gamma        | JNID/IL          | 1.48E-14 | 3.36E-11           | 1.38E-10           | 6.30E-10          | 0.300  | 2.177E+09 | 18.8                     |            |
|                        | HTX-LOHT                | Heat Exchanger Plugging/Loss of Heat<br>Transfer                      | EPIX/RADS     | 67       | 222,831,700      | h      | 1750       | Gamma        | EB/PL/KS         | 1.11E-09 | 1.50E-07           | 3.39E-07           | 1.32E-06          | 0.483  | 1.420E+06 | 8.8                      | 20062      |
|                        | HTX-ILS                 | Heat Exchanger Internal Leakage (Small)                               | EPIX/RADS     | 61       | 222,831,700      | h      | 1750       | Gamma        | JNID/IL          | 2.21E-07 | 2.74E-07           | 2.76E-07           | 3.36E-07          | 61.500 | 2.230E+08 | 1.2                      | 20062      |
|                        | HTX-ILL                 | Heat Exchanger Internal Leakage<br>(Rupture)                          | NUREG/CR-6928 | (note c) |                  | h      | 1750       | Gamma        | JNID/IL          | 5.91E-13 | 1.35E-09           | 5.52E-09           | 2.53E-08          | 0.300  | 5.435E+07 | 18.8                     | 20062      |
| Heat Exchanger (HTX)   | HTX-ELS                 | Heat Exchanger External Leakage (Small)                               | EPIX/RADS     | 38       | 222,831,700      | h      | 1750       | Gamma        | EB/PL/KS         | 5.71E-09 | 1.21E-07           | 1.90E-07           | 6.08E-07          | 0.825  | 4.350E+06 | 5.0                      | 20062      |
|                        | HTX-ELL                 | Heat Exchanger External Leakage<br>(Rupture)                          | NUREG/CR-6928 | (note c) |                  | h      | 1750       | Gamma        | EB/PL/KS         | 3.05E-12 | 6.95E-09           | 2.85E-08           | 1.30E-07          | 0.300  | 1.053E+07 | 18.8                     | 20062      |
|                        | HTX-PG-CCW              | Heat Exchanger Plugging Non Standby                                   | EPIX/RADS     | 8        | 28,273,230       | h      | 223        | Gamma        | JNID/IL          | 1.53E-07 | 2.89E-07           | 3.01E-07           | 4.87E-07          | 8.500  | 2.830E+07 | 1.7                      | 20062      |
|                        | HTX-PG-NE-CCW           | Component Cooling Water Heat<br>Exchanger Plugging Non-ExEE (hr-1)    | EPIX/RADS     | 3        | 28,273,230       | h      | 223        | Gamma        | JNID/IL          | 3.83E-08 | 1.12E-07           | 1.24E-07           | 2.49E-07          | 3.500  | 2.830E+07 | 2.2                      | 200620     |

Acronyms - ABT (automatic bus transfer switch), ACC (accumulator), ADU (air dryer unit), AFW (auxiliary feedwater), AHU (air handling unit), AOD (air-operated damper), AOV (air-operated damper), BWR (boiling water reactor), CCW (component cooling water), CHL (chiller), CIA (containment instrument air), CKV (check valve), CMP (air compressor), CRB (circuit breaker), CRD (control rod drive), CTF (cooling Tower fan), CTG (combustion turbine generator), CWS (circulating water system), EB/PL/KS (empirical Bayes/plant level/Kass Steffey), EDC (engine-driven compressor), EDG (diesel generator), EDP (engine-driven pump), ELL (external large leakage), ELS (external small leakage), EOV (explosive-operated valve), EPIX (fail To open or close), FTO (fail To start), HCS (high-pressure core spray), HCU (hydraulic control unit), HOD (hydraulic-operated damper), HOV (hydraulic-operated valve), HTG (hydro turbine generator), HTX (heat exchanger), HIC (internal small leakage), JNID/IL (internal small leakage MFW (main feedwater), MOD (motor-driven damper), MOV (motor-operated valve), NSS (main steam system), MSV (main steam sys and Availability Database System), RCS (reactor coolant system), ROD (control rod), RPS (reactor protection system), RV (safety relief valve), SS (system study), STBY (standby), SVV (code safety valve), SWS (service water system), TDP (turbine-driven pump), TNK (tank), VBV (vacuum breaker valve), WSRC (Westinghouse Savannah River Company), XVM (manual valve)

Note a - If these distributions are To be used as priors in Bayesian updates using plant-specific data, then a check for consistency between the prior and the data should be performed first, as suggested in supporting requirement DA-D4c in ASME/ANS RA-Sa-2009 and outlined in Section 6.2.3.5 of NUREG/CR-6823.

Note b - The error factor is from an empirical Bayes analysis at the plant level, with Kass-Steffey adjustment. The error factor is the 95th percentile divided by the median.

Note c - External and internal large leakage (ELL and ILL) events are defined as greater than 50 gpm. Because ELL and ILL events are rare, good estimates for ELL and ILL cannot be obtained using data from only one component. The NUREG/CR-6928 study (Table A.1.2-1) shows the mean of ELL is the ELS mean multiplied by 0.07 for pump, valves, tanks, and heat exchanger shells, multiplied by 0.2 for Emergency Service Water (ESW) pipe, multiplied by 0.1 for non-ESW pipe, and multiplied by 0.15 for heat exchanger tubes. The ILL mean is the ILS mean multiplied by 0.02.

Note d - The flow process logic (PLF) reliability was estimated by using the level process logic (PLL) data. The flow sensor/transmitter (STF) reliability was estimated by using the level sensor/transmitter (STL) data.

# 3. COMPONENT OR TRAIN UNAVAILABILITY

This section represents the third update to the original set of component availability data and results documented in NUREG/CR-6928. Train UA data and resulting probability distributions are summarized in Table 2. More detailed information is presented in Appendix B, Component/Train Unavailability Data Sheets.

The Mitigating Systems Performance Index (MSPI) [23] train UA data covering 2006–2020 were used to update the train UA estimates for MSPI systems and components and trains. For non-MSPI systems, the UA results from the original NUREG/CR-6928 continue to be used.

## Table 2. Train UA data and results.

|          |                       | Train                   |                                                                              |             |                | Data        |                          |           | 1        | Industry-average Pro | bability Distribution | n (note a) |          |          |              |            | 1        |
|----------|-----------------------|-------------------------|------------------------------------------------------------------------------|-------------|----------------|-------------|--------------------------|-----------|----------|----------------------|-----------------------|------------|----------|----------|--------------|------------|----------|
| Section  | Sub Section           | Unavailability<br>Event | Train Description                                                            | Data Source | Analysis       | MSPI Trains | Distribution<br>(note b) | 5th       | Median   | Mean                 | 95th                  | α          | β        | Std Dev  | Error Factor | Date Range | Comments |
|          | 1E EDG                | EDG-EPS                 | Diesel Generator Test or Maintenance                                         | EPIX/RADS   | CurveFit/Train | 258         | Normal                   | 3.48E-03  | 1.51E-02 | 1.51E-02             | 2.67E-02              |            |          | 7.04E-03 | 1.8          | 20062020   |          |
| ors      | Combustion<br>Turbine | CTG                     | Combustion Turbine Generator Test or<br>Maintenance                          | IPEs        | SCNID (IPEs/2) |             | Beta                     | 2.12E-04  | 2.43E-02 | 5.00E-02             | 1.87E-01              | 0.500      | 9.5000   |          | 7.7          |            | (Note c) |
| nerat    | HPCS                  | EDG-HCS                 | HPCS Diesel Generator Test or<br>Maintenance                                 | EPIX/RADS   | CurveFit/Train | 8           | Normal                   | 7.13E-03  | 1.33E-02 | 1.33E-02             | 1.94E-02              |            |          | 3.74E-03 | 1.5          | 20062020   |          |
| Ge       | Generator Service     | EDG-SW                  | Service Water for Emergency Diesel<br>Generator Test or Maintenance          | EPIX/RADS   | CurveFit/Train | 6           | Normal                   | -4.49E-04 | 1.11E-02 | 1.11E-02             | 2.27E-02              |            |          | 7.04E-03 | 2.0          | 20062020   |          |
|          | Water                 | HCS-SW                  | Service Water for High Pressure Core<br>Spray Generator Test or Maintenance  | EPIX/RADS   | CurveFit/Train | 7           | Normal                   | 4.91E-03  | 7.32E-03 | 7.32E-03             | 9.72E-03              |            |          | 1.46E-03 | 1.3          | 20062020   | ļ        |
|          |                       | MDP-ALL                 | Motor-Driven Pump Test or<br>Maintenance (All Clean Systems)                 | EPIX/RADS   | CurveFit/Train | 1061        | Normal                   | -8.39E-03 | 6.56E-03 | 6.56E-03             | 2.15E-02              |            |          | 9.09E-03 | 3.3          | 20062020   |          |
|          |                       | MDP-AFW                 | Motor-Driven Pump Test or<br>Maintenance (AFW)                               | EPIX/RADS   | CurveFit/Train | 124         | Normal                   | -2.01E-04 | 3.14E-03 | 3.14E-03             | 6.49E-03              |            |          | 2.03E-03 | 2.1          | 20062020   | 1        |
|          |                       | MDP-CCW                 | Motor-Driven Pump Test or<br>Maintenance (CCW)                               | EPIX/RADS   | CurveFit/Train | 142         | Normal                   | -5.58E-03 | 4.82E-03 | 4.82E-03             | 1.52E-02              |            |          | 6.32E-03 | 3.2          | 20062020   |          |
|          |                       | MDP-ESW                 | Motor-Driven Pump Test or<br>Maintenance (ESW)                               | EPIX/RADS   | CurveFit/Train | 305         | Normal                   | -1.12E-02 | 1.24E-02 | 1.24E-02             | 3.61E-02              |            |          | 1.44E-02 | 2.9          | 20062020   |          |
|          |                       | MDP-FWS                 | Feed Water System Motor-Driven<br>Pumps Test or Maintenance                  | EPIX/RADS   | CurveFit/Train | 4           | Normal                   | 6.43E-03  | 7.68E-03 | 7.68E-03             | 8.93E-03              |            |          | 7.61E-04 | 1.2          | 20062020   |          |
|          |                       | MDP-HCS                 | Motor-Driven Pump Test or<br>Maintenance (HCS)                               | EPIX/RADS   | CurveFit/Train | 8           | Normal                   | 4.22E-03  | 7.68E-03 | 7.68E-03             | 1.11E-02              |            |          | 2.10E-03 | 1.5          | 20062020   | l        |
|          |                       | MDP-HPI                 | Motor-Driven Pump Test or<br>Maintenance (HPI)                               | EPIX/RADS   | CurveFit/Train | 199         | Normal                   | -4.32E-04 | 2.99E-03 | 2.99E-03             | 6.40E-03              |            |          | 2.08E-03 | 2.1          | 20062020   | <u> </u> |
|          |                       | MDP-RHR                 | Motor-Driven Pump Test or<br>Maintenance (RHR)                               | EPIX/RADS   | CurveFit/Train | 225         | Normal                   | 3.91E-04  | 5.09E-03 | 5.09E-03             | 9.79E-03              |            |          | 2.86E-03 | 1.9          | 20062020   |          |
|          |                       | MDP-RHR-BWR             | Motor-Driven Pump Test or<br>Maintenance (RHR-BWR)                           | EPIX/RADS   | CurveFit/Train | 80          | Normal                   | 1.84E-03  | 5.92E-03 | 5.92E-03             | 1.00E-02              |            |          | 2.48E-03 | 1.7          | 20062020   | l        |
|          | Motor Driven          | MDP-RHR-PWR             | Motor-Driven Pump Test or<br>Maintenance (RHR-PWR)                           | EPIX/RADS   | CurveFit/Train | 145         | Normal                   | -2.28E-04 | 4.63E-03 | 4.63E-03             | 9.50E-03              |            |          | 2.96E-03 | 2.0          | 20062020   | ļ        |
|          |                       | MDP-RHRSW               | Motor-Driven Pump Test or<br>Maintenance (RHR Service Water)                 | EPIX/RADS   | CurveFit/Train | 54          | Normal                   | 4.43E-04  | 4.91E-03 | 4.91E-03             | 9.38E-03              |            |          | 2.72E-03 | 1.9          | 20062020   | <u> </u> |
|          |                       | PDP                     | Positive Displacement Pump Test or<br>Maintenance                            | IPEs        | SCNID (IPEs)   |             | Beta                     | 1.26E-05  | 1.46E-03 | 3.19E-03             | 1.23E-02              | 0.500      | 156.0000 |          | 8.4          |            | (Note c) |
|          |                       | MDP-CLEAN               | Motor-Driven Pump Test or<br>Maintenance (Clean System)                      | EPIX/RADS   | CurveFit/Train | 702         | Normal                   | -1.97E-03 | 4.14E-03 | 4.14E-03             | 1.02E-02              |            |          | 3.71E-03 | 2.5          | 20062020   |          |
| Pumps    |                       | MDP-NR-<br>CLEAN        | Motor-Driven Pump Test &<br>Maintenance (Normally Running<br>System, Clean)  | EPIX/RADS   | CurveFit/Train | 146         | Normal                   | -5.39E-03 | 4.90E-03 | 4.90E-03             | 1.52E-02              |            |          | 6.25E-03 | 3.1          | 20062020   |          |
| I        |                       | MDP-NS-CLEAN            | Motor-Driven Pump Test or<br>Maintenance (Normally Standby<br>System, Clean) | EPIX/RADS   | CurveFit/Train | 556         | Normal                   | -4.17E-04 | 3.94E-03 | 3.94E-03             | 8.30E-03              |            |          | 2.65E-03 | 2.1          | 20062020   |          |
|          |                       | MDP-NR-DIRTY            | Motor-Driven Pump Test or<br>Maintenance (Normally Running<br>System, Dirty) | EPIX/RADS   | CurveFit/Train | 305         | Normal                   | -1.12E-02 | 1.24E-02 | 1.24E-02             | 3.61E-02              |            |          | 1.44E-02 | 2.9          | 20062020   |          |
| -        |                       | MDP-NS-DIRTY            | Motor-Driven Pump Test or<br>Maintenance (Normally Standby<br>System, Dirty) | EPIX/RADS   | CurveFit/Train | 359         | Normal                   | -1.10E-02 | 1.13E-02 | 1.13E-02             | 3.36E-02              |            |          | 1.35E-02 | 3.0          | 20062020   |          |
|          |                       | TDP-ALL                 | Turbine-Driven Pump Test or<br>Maintenance (AFW, HPCI, and RCIC<br>combined) | EPIX/RADS   | CurveFit/Train | 120         | Normal                   | 1.16E-05  | 7.30E-03 | 7.30E-03             | 1.46E-02              |            |          | 4.43E-03 | 2.0          | 20062020   |          |
|          |                       | TDP-AFW                 | Turbine-Driven Pump Test or<br>Maintenance (AFW)                             | EPIX/RADS   | CurveFit/Train | 66          | Normal                   | -2.71E-04 | 4.64E-03 | 4.64E-03             | 9.55E-03              |            |          | 2.99E-03 | 2.1          | 20062020   |          |
|          | Turbine Driven        | TDP-HCI                 | Turbine-Driven Pump Test or<br>Maintenance (HPCI)                            | EPIX/RADS   | CurveFit/Train | 24          | Normal                   | 6.57E-03  | 1.11E-02 | 1.11E-02             | 1.57E-02              |            |          | 2.77E-03 | 1.4          | 20062020   |          |
|          |                       | TDP-RCI                 | Turbine-Driven Pump Test or<br>Maintenance (RCIC)                            | EPIX/RADS   | CurveFit/Train | 30          | Normal                   | 3.07E-03  | 1.01E-02 | 1.01E-02             | 1.71E-02              |            |          | 4.26E-03 | 1.7          | 20062020   |          |
|          |                       | TDP-HCI-RCI             | Turbine-Driven Pump Test or<br>Maintenance (HPCI and RCIC<br>combined)       | EPIX/RADS   | CurveFit/Train | 24          | Normal                   | 6.57E-03  | 1.11E-02 | 1.11E-02             | 1.57E-02              |            |          | 2.77E-03 | 1.4          | 20062020   |          |
| ľ        |                       | EDP                     | Engine-Driven Pump Test or<br>Maintenance                                    | EPIX/RADS   | CurveFit/Train | 15          | Normal                   | -2.87E-03 | 2.27E-02 | 2.27E-02             | 4.83E-02              |            |          | 1.56E-02 | 2.1          | 20062020   |          |
|          | Engine Driven         | EDP-AFW                 | Engine-Driven Pump Test or<br>Maintenance                                    | EPIX/RADS   | CurveFit/Train | 5           | Normal                   | 2.10E-03  | 5.47E-03 | 5.47E-03             | 8.85E-03              |            |          | 2.05E-03 | 1.6          | 20062020   |          |
|          |                       | EDP-ESW                 | Engine-Driven Pump Test or<br>Maintenance                                    | EPIX/RADS   | CurveFit/Train | 10          | Normal                   | 1.29E-02  | 3.14E-02 | 3.14E-02             | 4.99E-02              |            |          | 1.13E-02 | 1.6          | 20062020   |          |
| ers      | Pooled                | HTX                     | Heat Exchanger Test or Maintenance                                           | EPIX/RADS   | CurveFit/Train | 98          | Normal                   | -7.13E-03 | 7.63E-03 | 7.63E-03             | 2.24E-02              |            |          | 8.97E-03 | 2.9          | 20062020   |          |
| chang    | CCW                   | HTX-CCW                 | Heat Exchanger Test or Maintenance<br>(CCW)                                  | EPIX/RADS   | CurveFit/Train | 86          | Normal                   | -7.43E-03 | 7.73E-03 | 7.73E-03             | 2.29E-02              |            |          | 9.22E-03 | 3.0          | 20062020   |          |
| Heat Exc | Service Water         | HTX-ESW                 | Heat Exchanger Test or Maintenance<br>(ESW)                                  | EPIX/RADS   | CurveFit/Train | 4           | Normal                   | 9.74E-03  | 1.61E-02 | 1.61E-02             | 2.24E-02              |            |          | 3.84E-03 | 1.4          | 20062020   |          |

|         |                 | Train                   |                                                                |               |                | Data        |                          |           | 1        | Industry-average Pro | bability Distributio | n (note a) |           |          |              |            | 1        |
|---------|-----------------|-------------------------|----------------------------------------------------------------|---------------|----------------|-------------|--------------------------|-----------|----------|----------------------|----------------------|------------|-----------|----------|--------------|------------|----------|
| Section | Sub Section     | Unavailability<br>Event | Train Description                                              | Data Source   | Analysis       | MSPI Trains | Distribution<br>(note b) | 5th       | Median   | Mean                 | 95th                 | α          | β         | Std Dev  | Error Factor | Date Range | Comments |
|         | Residual Heat   | HTX-RHR-BWR             | Heat Exchanger and Pump Train Test or<br>Maintenance (RHR-BWR) | EPIX/RADS     | CurveFit/Train | 6           | Normal                   | -4.47E-04 | 3.05E-03 | 3.05E-03             | 6.55E-03             |            |           | 2.13E-03 | 2.1          | 20062020   |          |
|         | Removal         | HTX-RHR-PWR             | Heat Exchanger and Pump Train Test or<br>Maintenance (RHR-BWR) | EPIX/RADS     | CurveFit/Year  | 15          | Normal                   | -4.97E-04 | 2.09E-04 | 2.09E-04             | 9.15E-04             |            |           | 4.29E-04 | 4.4          | 20062020   |          |
|         | Breaker         | CRB                     | Circuit Breaker Test or Maintenance                            | Unknown       | CurveFit       |             | Beta                     |           |          | 5.00E-01             |                      | 0.500      |           |          |              |            | 1        |
|         | D               | BDC                     | Bus (DC) Test or Maintenance                                   | IPEs          | SCNID (IPEs)   |             | Beta                     | 7.87E-07  | 9.10E-05 | 2.00E-04             | 7.68E-04             | 0.500      | 2499.5000 |          | 8.4          |            | (Note c) |
| -       | Bus             | BAC                     | Bus (AC) Test or Maintenance                                   | IPEs          | IPEs           |             | Beta                     | 7.87E-07  | 9.10E-05 | 2.00E-04             | 7.68E-04             | 0.500      | 2499.5000 |          | 8.4          |            | (Note c) |
| ica     | _               | BAT                     | Battery Test or Maintenance                                    | Letter        | CurveFit       |             | Lognormal                | 2.80E-06  | 1.48E-04 | 2.72E-03             | 7.84E-03             |            |           |          | 52.9         |            | í        |
| ecti    | Battery         | BCH                     | Battery Charger Test or Maintenance                            | IPEs          | SCNID (IPEs)   |             | Beta                     | 7.89E-06  | 9.12E-04 | 2.00E-03             | 7.68E-03             | 0.500      | 249.5000  |          | 8.4          |            | (Note c) |
| ā       | Transformer     | TFM                     | Startup Transformer Test or<br>Maintenance                     | Letter        | CurveFit       |             | Lognormal                | 4.55E-07  | 4.11E-05 | 1.75E-03             | 3.72E-03             |            |           |          | 90.5         |            | (Note d) |
| ľ       | RPS             | CCP-RPS                 | RPS Channel A Test or Maintenance                              | RPS SS        | NUREG/CR-5500  |             | Beta                     | 4.14E-05  | 4.78E-03 | 5.00E-03             | 3.96E-02             | 0.500      | 47.7600   |          | 8.3          |            | (Note e) |
|         |                 | AHU                     | Air Handling Unit Test or Maintenance                          | IPEs          | SCNID (IPEs)   |             | Beta                     | 9.87E-06  | 1.14E-03 | 2.50E-03             | 9.59E-03             | 0.500      | 199.5000  |          | 8.4          |            | (Note c) |
|         | Ventilation     | CHL                     | Chiller Test or Maintenance                                    | IPEs          | SCNID (IPEs/2) |             | Beta                     | 8.11E-05  | 9.34E-03 | 2.00E-02             | 7.61E-02             | 0.500      | 24.5000   |          | 8.2          |            | (Note c) |
| Ī       |                 | MDC                     | Motor-Driven Compressor Test or<br>Maintenance                 | IPEs          | SCNID (IPEs/2) |             | Beta                     | 4.80E-05  | 5.54E-03 | 1.20E-02             | 4.59E-02             | 0.500      | 41.1667   |          | 8.3          |            | (Note c) |
| in a    | Compressor      | DDC                     | Diesel-Driven Compressor Test or<br>Maintenance                | Existing SPAR | JNID/IL        |             | Beta                     | 4.80E-05  | 5.54E-03 | 1.20E-02             | 4.59E-02             | 0.500      | 41.1667   |          | 8.3          |            | From MDC |
| Othe    |                 | EDC                     | Engine-Driven Compressor Test or<br>Maintenance                | IPEs          | SCNID (IPEs/2) |             | Beta                     | 4.80E-05  | 5.54E-03 | 1.20E-02             | 4.59E-02             | 0.500      | 41.1667   |          | 8.3          |            | (Note c) |
|         |                 | FAN                     | Fan Test or Maintenance                                        | IPEs          | SCNID (IPEs)   |             | Beta                     | 7.89E-06  | 9.12E-04 | 2.00E-03             | 7.68E-03             | 0.500      | 249.5000  |          | 8.4          |            | (Note c) |
|         | Fan             | CTF                     | Cooling Tower Fan Test or<br>Maintenance                       | IPEs          | SCNID (IPEs)   |             | Beta                     | 7.89E-06  | 9.12E-04 | 2.00E-03             | 7.68E-03             | 0.500      | 249.5000  |          | 8.4          |            | (Note c) |
|         | Explosive Valve | EPV                     | Explosive-Operated (SQUIBB) Valve<br>Test or Maintenance       | IPEs          | SCNID (IPEs)   |             | Beta                     | 2.36E-06  | 2.73E-04 | 6.00E-04             | 2.30E-03             | 0.500      | 832.8330  |          | 8.4          |            | (Note c) |
|         |                 | HDR-AFW                 | AFW Header Test or Maintenance                                 | EPIX/RADS     | CurveFit/Train | 16          | Normal                   | -1.07E-03 | 7.70E-04 | 7.70E-04             | 2.61E-03             |            |           | 1.12E-03 | 3.4          | 20062020   | í        |
|         |                 | HDR-CCW                 | CCW Header Test or Maintenance                                 | EPIX/RADS     | CurveFit/Train | 6           | Normal                   | -4.16E-04 | 2.42E-04 | 2.42E-04             | 9.00E-04             |            |           | 4.00E-04 | 3.7          | 20062020   | í .      |
| SI      | Clean Water     | HDR-HPI                 | HPSI Header Test or Maintenance                                | EPIX/RADS     | CurveFit/Train | 45          | Normal                   | -2.68E-04 | 1.36E-04 | 1.36E-04             | 5.41E-04             |            |           | 2.46E-04 | 4.0          | 20062020   | í        |
| ade     |                 | HDR-ISO                 | ISO Header Test or Maintenance                                 | EPIX/RADS     | CurveFit/Train | 6           | Normal                   | 7.24E-04  | 2.62E-03 | 2.62E-03             | 4.52E-03             |            |           | 1.15E-03 | 1.7          | 20062020   | ı        |
| He      |                 | HDR-RHR                 | RHR Header Test or Maintenance                                 | EPIX/RADS     | CurveFit/Train | 16          | Normal                   | -1.39E-03 | 7.21E-04 | 7.21E-04             | 2.83E-03             |            |           | 1.28E-03 | 3.9          | 20062020   |          |
|         | Service Water   | HDR-ESW                 | ESW Header Test or Maintenance                                 | EPIX/RADS     | CurveFit/Train | 123         | Normal                   | -2.34E-02 | 4.61E-03 | 4.61E-03             | 3.26E-02             |            |           | 1.70E-02 | 7.1          | 20062020   | ļ        |
|         | Service water   | HDR-RHRSW               | RHRSW Header Test or Maintenance                               | EPIX/RADS     | CurveFit/Train | 8           | Normal                   | -2.96E-03 | 2.81E-03 | 2.81E-03             | 8.57E-03             |            |           | 3.50E-03 | 3.1          | 20062020   | 1        |

Action with a constrained in the constrained noninformative distribution), SAC (actions), BAC (a

Note a - If these distributions are to be used as priors in Bayesian updates using plant-specific data, then a check for consistency between the prior and the data should be performed first, as suggested in supporting requirement DA-D4c in ASME/ANS RA-Sa-2009 and outlined in Section 6.2.3.5 of NUREG/CR-6823.

Note b - For the ROP UAs using the MSPI data and assessed through RADS, the mean is the average of individual train UAs. Each train UA is the total number of planned and unplanned outage hours divided by total number of plant critical hours. The percentiles were obtained from the ordered set of train UAs. The error factor is the 95th percentile divided by the median.

Note c - The UA results are from NUREG/CR-6928 and supported by IPE data. For IPE data with UA estimates > 0.005, the IPE mean was divided by two. For IPE data with UA estimates < 0.005, the IPE result was used directly. See Appendix B in NUREG/CR-6928 for details.

Note d - The UA results are from the INL Letter: Generic Test and Maintenance Unavailability Values, JCN W6467 - MBS-02-99.

Note e - The UA results are supported by the RPS system study (NUREG/CR-5500, Vol 2,3,10, and 11).

# 4. SYSTEM SPECIAL EVENTS

Several special events related to system performance are included in the SPAR models and provided in NUREG/CR-6928. These events address performance and conditional probability issues related to operation of HPCI, HPCS, and RCIC during unplanned demands. For RCIC, the probability of TDP having to restart during the mission time, failure of the TDP to restart, and failure to recover restart failures are addressed. Information on such events must be obtained from unplanned demand data, rather than test data. Additional RCIC events address cycling of the injection valve and failure to automatically switch from pump recirculation mode to injection mode. HPCI events address cycling of the injection valve and failure to switch the suction source. Finally, HPCS events address failure to switch the suction source. All of the system special events covered in this section apply only to BWRs.

These special events have not been updated since NUREG/CR-6928. The data and results listed in Table 3 are the same as those in NUREG/CR-6928, the 2010 update, and the 2015 update. They are included in this report for completeness. More detailed information can be found at Section C-3 and Appendix C of NUREG/CR-6928.

| Special Event        |                                                                            | Data   | D        | ata                 |           | Industry-averag              | e Probability or | Rate Disti | ribution (note | a)              |          |
|----------------------|----------------------------------------------------------------------------|--------|----------|---------------------|-----------|------------------------------|------------------|------------|----------------|-----------------|----------|
| Name                 | Description                                                                | Source | Failures | Demands<br>or Hours | d or<br>h | Distribution<br>(note b)     | Mean             | α          | β              | Error<br>Factor | Comments |
| TDP-PRST<br>(RCIC)   | RCIC TDP probability of restart                                            | SS     | 6        | 47                  | d         | Beta (Jeffreys,<br>Jeffreys) | 1.35E-01         | 6.500      | 4.150E+01      | 1.7             |          |
| TDP-FRST<br>(RCIC)   | RCIC TDP restart failure per event                                         | SS     | 1        | 17                  | d         | Beta (Jeffreys,<br>SCNID)    | 8.33E-02         | 0.500      | 5.500E+00      | 7.2             |          |
| TDP-FRFRST<br>(RCIC) | RCIC failure to recover TDP restart failure                                | SS     | 0        | 1                   | d         | Beta (Jeffreys,<br>SCNID)    | 2.50E-01         | 0.500      | 1.500E+00      | 4.7             |          |
| MOV-PMINJ<br>(RCIC)  | RCIC injection valve probability of<br>multiple injections                 | SS     | 14       | 28                  | d         | Beta (EB/YL/KS,<br>EB/YL/KS) | 5.03E-01         | 4.180      | 4.130E+00      | 1.5             |          |
| MOV-FTRO<br>(RCIC)   | RCIC injection valve fails to reopen                                       | SS     | 1        | 38                  | d         | Beta (Jeffreys,<br>SCNID)    | 3.85E-02         | 0.500      | 1.250E+01      | 7.9             |          |
| MOV-FRFTRO<br>(RCIC) | RCIC failure to recover injection valve failure to reopen                  | SS     | 1        | 1                   | d         | Beta (Jeffreys,<br>SCNID)    | 7.50E-01         | 0.500      | 1.667E-01      | 1.1             |          |
| SUC-FTFRI<br>(RCIC)  | RCIC failure to transfer back to injection mode (pump recirculation valve) | SS     | 1        | 198                 | h         | Gamma (Jeffreys,<br>SCNID)   | 7.58E-03         | 0.500      | 6.598E+01      | 8.4             | (note c) |
| SUC-FRFTFR<br>(RCIC) | RCIC failure to recover transfer failure                                   | SS     | 0        | 1                   | d         | Beta (Jeffreys,<br>SCNID)    | 2.50E-01         | 0.500      | 1.500E+00      | 4.7             |          |
| MOV-PMINJ<br>(HPCI)  | HPCI injection valve probability of<br>multiple injections                 | SS     | 2        | 17                  | d         | Beta (Jeffreys,<br>SCNID)    | 1.39E-01         | 0.500      | 3.100E+00      | 6.4             |          |
| MOV-FTRO<br>(HPCI)   | HPCI injection valve fails to reopen                                       | SS     | 1        | 8                   | d         | Beta (Jeffreys,<br>SCNID)    | 1.67E-01         | 0.500      | 2.500E+00      | 6.0             |          |
| MOV-FRFTRO<br>(HPCI) | HPCI failure to recover injection valve failure to reopen                  | SS     | 1        | 1                   | d         | Beta (Jeffreys,<br>SCNID)    | 7.50E-01         | 0.500      | 1.667E-01      | 1.1             |          |
| SUC-FTFR<br>(HPCI)   | HPCI failure to transfer                                                   | SS     | 0        | 1270                | d         | Beta (Jeffreys,<br>SCNID)    | 3.93E-04         | 0.500      | 1.271E+03      | 8.4             |          |
| SUC-FRFTFR<br>(HPCI) | HPCI failure to recover transfer failure                                   | SS     | 0        | 0                   | d         | Beta (Jeffreys,<br>SCNID)    | 5.00E-01         | 0.500      | 5.000E-01      | 2.0             |          |
| SUC-FTFR<br>(HPCS)   | HPCS failure to transfer                                                   | SS     | 1        | 478                 | d         | Beta (Jeffreys,<br>SCNID)    | 3.13E-03         | 0.500      | 1.592E+02      | 8.4             |          |
| SUC-FRFTFR<br>(HPCS) | HPCS failure to recover transfer failure                                   | SS     | 1        | 1                   | d         | Beta (Jeffreys,<br>SCNID)    | 7.50E-01         | 0.500      | 1.667E-01      | 1.1             |          |

#### Table 3. System special event data and results.

Acronyms - EB (empirical Bayes), HPCI (high-pressure coolant injection), HPCS (high-pressure core spray), KS (Kass-Steffey), MOV (motor-operated valve), RCIC (reactor core isolation cooling), SCNID (simplified constrained noninformative distribution), SUC (suction), SS (updated system study), TDP (turbine-driven pump), YL (year level)

Note a - If these distributions are to be used as priors in Bayesian updates using plant-specific data, then a check for consistency between the prior and the data should be performed first, as suggested in supporting requirement DA-D4c in ASME/ANS RA-Sa-2009 and outlined in Section 6.2.3.5 in NUREG/CR-6823.

Note b - The format for the distributions is the following: distribution type (source for mean, source for  $\alpha$  factor).

Note c - Note that this is per hour. Failure occurred 8 min after RCIC initiation.

# 5. INITIATING EVENT FREQUENCY

This section presents the third update to the original set of IE data and results documented in NUREG/CR-6928. The updated IE data and resulting frequency distributions are presented in Table 4. These events represent various categories of unplanned automatic and manual reactor trips within the industry. These estimates reflect industry-average frequencies for IEs, where U.S. commercial NPPs are defined as the industry. Only those IEs occurring while plants are critical are covered. Low-power and shutdown IEs are not addressed, other than the shutdown loss-of-offsite-power (LOOP) IEs.

For the baseline period used to quantify the IE frequencies, Section D.1.2 of NUREG/CR-6928 describes the original process while Section 2 of INL/EXT-21-63577 [24] presents the process used in the 2020 IE analysis and the results that were used in this section. One significant change made in this update is that for "not sparse" IE groups including loss of feedwater, BWR general transients, BWR loss of condenser heat sink, PWR general transients, and PWR loss of condenser heat sink, the most recent 10-year period (i.e., 2011—2020) and the most recent 15-year period (i.e., 2006–2020) were included in the considerations in order to respond to the industry request, discussed previously, to provide shorter periods than in previous updates (e.g., use of 1997 or 1998 as the fixed starting year for parameter estimations) in order to reflect more recent industry performance. Note that for SPAR model input, the staff intends to use the 15-year timeframe, when feasible.

IE frequency estimates were obtained from a hierarchy of sources, as explained in Section 8 of NUREG/CR-6928. The preferred sources are the NRC IE database and the LOOP database, as accessed using the RADS website https://rads.inl.gov/. The IE database uses IE definitions presented in NUREG/CR-5750 [25]. Most IE parameter estimates were obtained from the IE database and LOOP database. Other sources used include NUREG/CR-6890 [26] (and its updates) and NUREG-1829 [27]. LOOP has been analyzed in detail annually in NRC LOOP studies after NUREG/CR-6890, and LOOP data were obtained from the most recent 2020 LOOP update INL/EXT-21-64151 [28]. The data period for the LOOP frequency is 2006–2020. The small, medium, and large LOCA frequency distributions were obtained from the approach described in [29]. The excessive LOCA (or vessel rupture) rate estimate was obtained from WASH-1285 [30]. The IE data sheets in Appendix C explainhow data from each of these sources were used to obtain industry-average IE parameter estimates.

This update uses the same hierarchy of the 2015 update in terms of IE categories and subcategories. A few IEs that have been added to the 2015 update were analyzed in this update to support more detailed SPAR models:

- 1. All of the high-energy line break events
- 2. Two or more stuck open relief valves
- 3. Calculated loss of multiple alternating current (AC) or direct current (DC) busses
- 4. Interfacing system Loss of Coolant Accident (LOCA)
- 5. Reactor coolant pump seal LOCA (RCPLOCA)
- 6. LOOP in power operations and in shutdown.

# Table 4. Initiating event data and results.

|                   |                                    |                  |                                                                |                      | Data                |                             |              |                       | Indus    | stry-average Freq | uency Distributio | on (note a) |      |          |                 |                    |
|-------------------|------------------------------------|------------------|----------------------------------------------------------------|----------------------|---------------------|-----------------------------|--------------|-----------------------|----------|-------------------|-------------------|-------------|------|----------|-----------------|--------------------|
| Cat.              | Sub-Category                       | Initiating Event | Description                                                    | Source               | Number<br>of Events | Critical<br>Years<br>(rcry) | Distribution | Analysis<br>Type      | 5th      | Median            | Mean              | 95th        | α    | β        | Error<br>Factor | Baseline<br>Period |
|                   |                                    | FWLB BWR FI      | Feedwater Line Break (BWR)                                     | RADS                 | 0                   | 989.4                       | Gamma        | JNID/IL               | 1.99E-06 | 2.30E-04          | 5.05E-04          | 1.94E-03    | 0.5  | 9.89E+02 | 8.4             | 19882020           |
|                   |                                    | FWLB PWR FI      | Feedwater Line Break (PWR)                                     | RADS                 | 2                   | 1962.4                      | Gamma        | JNID/IL               | 2.92E-04 | 1.11E-03          | 1.27E-03          | 2.82E-03    | 2.5  | 1.96E+03 | 2.5             | 19882020           |
|                   | High Energy                        | SLBIC PWR FI     | Steam Line Break Inside<br>Containment (PWR)                   | RADS                 | 0                   | 1962.4                      | Gamma        | JNID/IL               | 1.00E-06 | 1.16E-04          | 2.55E-04          | 9.80E-04    | 0.5  | 1.96E+03 | 8.4             | 19882020           |
|                   | Line Breaks                        | SLBOC BWR FI     | Steam Line Break Outside<br>Containment (BWR)                  | RADS                 | 2                   | 989.4                       | Gamma        | JNID/IL               | 5.79E-04 | 2.20E-03          | 2.53E-03          | 5.60E-03    | 2.5  | 9.89E+02 | 2.5             | 19882020           |
|                   |                                    | SLBOC PWR FI     | Steam Line Break Outside<br>Containment (PWR)                  | RADS                 | 10                  | 1962.4                      | Gamma        | JNID/IL               | 2.96E-03 | 5.19E-03          | 5.35E-03          | 8.33E-03    | 10.5 | 1.96E+03 | 1.6             | 19882020           |
|                   | Steam<br>Generator<br>Tube Rupture | SGTR             | Steam Generator Tube<br>Rupture                                | RADS                 | 3                   | 1962.4                      | Gamma        | JNID/IL               | 5.53E-04 | 1.62E-03          | 1.78E-03          | 3.59E-03    | 3.5  | 1.96E+03 | 2.2             | 19882020           |
|                   |                                    | LLOCA BWR        | Large Loss-of-Coolant<br>Accident (BWR)                        | RADS &<br>NUREG-1829 | 0                   | 573.8                       | Gamma        | (note b)              | 1.25E-09 | 2.86E-06          | 1.17E-05          | 5.36E-05    | 0.3  | 2.56E+04 | 18.8            | 20032020           |
|                   |                                    | LLOCA PWR        | Large Loss-of-Coolant<br>Accident (PWR)                        | RADS &<br>NUREG-1829 | 0                   | 1096.5                      | Gamma        | (note b)              | 6.28E-10 | 1.43E-06          | 5.87E-06          | 2.69E-05    | 0.3  | 5.11E+04 | 18.8            | 20032020           |
| Control           |                                    | MLOCA BWR        | Medium Loss-of-Coolant<br>Accident (BWR)                       | RADS &<br>NUREG-1829 | 0                   | 573.8                       | Gamma        | (note b)              | 9.07E-08 | 3.17E-05          | 8.75E-05          | 3.64E-04    | 0.4  | 4.57E+03 | 11.5            | 20032020           |
| Inventory (       |                                    | MLOCA PWR        | Medium Loss-of-Coolant<br>Accident (PWR)                       | RADS &<br>NUREG-1829 | 0                   | 1096.5                      | Gamma        | (note b)              | 1.40E-08 | 3.18E-05          | 1.31E-04          | 5.97E-04    | 0.3  | 2.30E+03 | 18.8            | 20032020           |
|                   |                                    | SLOCA BWR        | Small Loss-of-Coolant<br>Accident (BWR)                        | RADS &<br>NUREG-1829 | 0                   | 573.8                       | Gamma        | (note b)              | 3.34E-07 | 1.17E-04          | 3.22E-04          | 1.34E-03    | 0.4  | 1.24E+03 | 11.5            | 20032020           |
| Primary/Secondary |                                    | SLOCA PWR        | Small Loss-of-Coolant<br>Accident (PWR)                        | RADS &<br>NUREG-1829 | 0                   | 1096.5                      | Gamma        | (note b)              | 3.19E-07 | 1.12E-04          | 3.09E-04          | 1.28E-03    | 0.4  | 1.30E+03 | 11.5            | 20032020           |
| ary/S             |                                    | VSLOCA BWR<br>FI | Very Small Loss-of-Coolant<br>Accident (BWR)                   | RADS                 | 2                   | 890.6                       | Gamma        | JNID/IL               | 6.43E-04 | 2.44E-03          | 2.81E-03          | 6.21E-03    | 2.5  | 8.91E+02 | 2.5             | 19922020           |
| Prim              | Loss of                            | VSLOCA PWR<br>FI | Very Small Loss-of-Coolant<br>Accident (PWR)                   | RADS                 | 0                   | 1744.8                      | Gamma        | JNID/IL               | 1.13E-06 | 1.31E-04          | 2.87E-04          | 1.10E-03    | 0.5  | 1.74E+03 | 8.4             | 19922020           |
|                   | Coolant<br>Accidents               | SORV1 BWR FI     | Stuck Open Safety/Relief<br>Valve (BWR)                        | RADS                 | 7                   | 838.6                       | Gamma        | EB/PL/KS              | 1.30E-03 | 6.85E-03          | 8.32E-03          | 2.03E-02    | 1.8  | 2.19E+02 | 3.0             | 19942020           |
|                   |                                    | SORV2 BWR FI     | Stuck Open Relief Valve >2<br>(BWR)                            | RADS                 | 0                   | 838.6                       | Gamma        | JNID/IL               | 2.34E-06 | 2.71E-04          | 5.96E-04          | 2.29E-03    | 0.5  | 8.39E+02 | 8.4             | 19942020           |
|                   |                                    | SORV1 PWR FI     | Stuck Open Safety/Relief<br>Valve (PWR)                        | RADS                 | 2                   | 1962.4                      | Gamma        | JNID/IL               | 2.92E-04 | 1.11E-03          | 1.27E-03          | 2.82E-03    | 2.5  | 1.96E+03 | 2.5             | 19882020           |
|                   |                                    | SORV2 PWR FI     | Stuck Open Relief Valve >2<br>(PWR)                            | RADS                 | 0                   | 1962.4                      | Gamma        | JNID/IL               | 1.00E-06 | 1.16E-04          | 2.55E-04          | 9.80E-04    | 0.5  | 1.96E+03 | 8.4             | 19882020           |
|                   |                                    | ISLOCA BWR FI    | Interfacing System Loss-of-<br>Coolant Accident (BWR)          | RADS                 | 0                   | 989.4                       | Gamma        | JNID/IL               | 1.99E-06 | 2.30E-04          | 5.05E-04          | 1.94E-03    | 0.5  | 9.89E+02 | 8.4             | 19882020           |
|                   |                                    | ISLOCA PWR FI    | Interfacing System Loss-of-<br>Coolant Accident (PWR)          | RADS                 | 0                   | 1962.4                      | Gamma        | JNID/IL               | 1.00E-06 | 1.16E-04          | 2.55E-04          | 9.80E-04    | 0.5  | 1.96E+03 | 8.4             | 19882020           |
|                   |                                    | RCPLOCA          | Reactor Coolant Pump Seal<br>Loss-of-Coolant Accident<br>(PWR) | RADS                 | 0                   | 1962.4                      | Gamma        | JNID/IL               | 1.00E-06 | 1.16E-04          | 2.55E-04          | 9.80E-04    | 0.5  | 1.96E+03 | 8.4             | 19882020           |
|                   |                                    | XLOCA            | Excessive Loss-of-Coolant<br>Accident (Vessel Rupture)         | WASH-1285            |                     |                             | Gamma        | Geo Mean<br>Aggregate | 1.07E-11 | 2.44E-08          | 1.00E-07          | 4.57E-07    | 0.3  | 3.00E+06 | 18.8            |                    |

|                         |                                                     |                  |                                                                              |        | Data                |                             |              |                  | Indus    | stry-average Freq | uency Distributio | n (note a) |      |          |                 |                    |
|-------------------------|-----------------------------------------------------|------------------|------------------------------------------------------------------------------|--------|---------------------|-----------------------------|--------------|------------------|----------|-------------------|-------------------|------------|------|----------|-----------------|--------------------|
| Cat.                    | Sub-Category                                        | Initiating Event | Description                                                                  | Source | Number<br>of Events | Critical<br>Years<br>(rcry) | Distribution | Analysis<br>Type | 5th      | Median            | Mean              | 95th       | α    | β        | Error<br>Factor | Baseline<br>Period |
|                         | General                                             | TRANS BWR        | Transient Initiating Event<br>(BWR)                                          | RADS   | 173                 | 316.7                       | Gamma        | EB/PL/KS         | 7.98E-02 | 4.52E-01          | 5.55E-01          | 1.38E+00   | 1.7  | 3.08E+00 | 3.1             | 20112020           |
| Its                     | Transient                                           | TRANS PWR        | Transient Initiating Event<br>(PWR)                                          | RADS   | 300                 | 596.5                       | Gamma        | EB/PL/KS         | 1.39E-01 | 4.60E-01          | 5.18E-01          | 1.09E+00   | 2.9  | 5.68E+00 | 2.4             | 20112020           |
| Transients              | Loss of<br>Condenser                                | LOCHS BWR FI     | Loss of Condenser Heat Sink<br>(BWR)                                         | RADS   | 16                  | 381.9                       | Gamma        | EB/PL/KS         | 1.77E-02 | 3.93E-02          | 4.19E-02          | 7.41E-02   | 5.7  | 1.36E+02 | 1.9             | 20092020           |
| Ë                       | Heat Sink                                           | LOCHS PWR FI     | Loss of Condenser Heat Sink<br>(PWR)                                         | RADS   | 23                  | 909.8                       | Gamma        | EB/PL/KS         | 1.04E-02 | 2.38E-02          | 2.53E-02          | 4.57E-02   | 5.4  | 2.11E+02 | 1.9             | 20062020           |
|                         | Loss of<br>Feedwater                                | LOMFW            | Loss of Main Feedwater                                                       | RADS   | 20                  | 913.2                       | Gamma        | EB/PL/KS         | 1.18E-03 | 1.53E-02          | 2.19E-02          | 6.51E-02   | 1.0  | 4.66E+01 | 4.3             | 20112020           |
| s                       |                                                     | LOSWS            | Loss of Safety Related<br>Cooling Water (Open<br>System)                     | RADS   | 1                   | 2951.7                      | Gamma        | JNID/IL          | 5.96E-05 | 4.01E-04          | 5.08E-04          | 1.32E-03   | 1.5  | 2.95E+03 | 3.3             | 19882020           |
| ystem                   | Loss of                                             | PLOSWS FI        | Partial Loss of SWS Initiating<br>Event                                      | RADS   | 4                   | 2951.7                      | Gamma        | JNID/IL          | 5.64E-04 | 1.41E-03          | 1.52E-03          | 2.87E-03   | 4.5  | 2.95E+03 | 2.0             | 19882020           |
| Loss of Support Systems | Safety-Related<br>Cooling Water                     | LOCCW FI         | Loss of Safety Related<br>Cooling Water (Closed<br>System)                   | RADS   | 1                   | 2951.7                      | Gamma        | JNID/IL          | 5.96E-05 | 4.01E-04          | 5.08E-04          | 1.32E-03   | 1.5  | 2.95E+03 | 3.3             | 19882020           |
| ss of 1                 |                                                     | PLOCCW FI        | Partial Loss of CCW<br>Initiating Event                                      | RADS   | 4                   | 2951.7                      | Gamma        | JNID/IL          | 5.64E-04 | 1.41E-03          | 1.52E-03          | 2.87E-03   | 4.5  | 2.95E+03 | 2.0             | 19882020           |
| Lo                      | Loss of                                             | LOIA BWR         | Loss of Instrument Air<br>(BWR)                                              | RADS   | 6                   | 916.9                       | Gamma        | EB/PL/KS         | 1.02E-04 | 3.74E-03          | 6.55E-03          | 2.25E-02   | 0.7  | 1.04E+02 | 6.0             | 19912020           |
|                         | Instrument<br>Control Air                           | LOIA PWR         | Loss of Instrument Air<br>(PWR)                                              | RADS   | 10                  | 1453.3                      | Gamma        | JNID/IL          | 4.00E-03 | 7.01E-03          | 7.23E-03          | 1.13E-02   | 10.5 | 1.45E+03 | 1.6             | 19972020           |
|                         |                                                     | PO.LOOP          | Loss-of-Offsite-Power, All<br>Categories, Power<br>Operations, per rcry      | LOOP   | 35                  | 1388.9                      | Gamma        | EB/PL/KS         | 2.39E-03 | 1.92E-02          | 2.52E-02          | 6.83E-02   | 1.3  | 5.28E+01 | 3.6             | 20062020           |
|                         |                                                     | PO.LOOP-GR       | Loss-of-Offsite-Power, Grid-<br>Related, Power Operations,<br>per rcry       | LOOP   | 7                   | 1388.9                      | Gamma        | JNID/IL          | 2.61E-03 | 5.16E-03          | 5.40E-03          | 8.99E-03   | 7.5  | 1.39E+03 | 1.7             | 20062020           |
|                         | Loss of Offsite<br>Power, Power<br>Operations       | PO.LOOP-PC       | Loss-of-Offsite-Power, Plant-<br>Centered, Power Operations,<br>per rcry     | LOOP   | 6                   | 1388.9                      | Gamma        | JNID/IL          | 2.12E-03 | 4.44E-03          | 4.68E-03          | 8.04E-03   | 6.5  | 1.39E+03 | 1.8             | 20062020           |
| ite Power               |                                                     | PO.LOOP-SC       | Loss-of-Offsite-Power,<br>Switchyard-Centered, Power<br>Operations, per rcry | LOOP   | 12                  | 1388.9                      | Gamma        | JNID/IL          | 5.26E-03 | 8.75E-03          | 9.00E-03          | 1.35E-02   | 12.5 | 1.39E+03 | 1.5             | 20062020           |
| Loss of Offsite Power   |                                                     | PO.LOOP-WR       | Loss-of-Offsite-Power,<br>Weather-Related, Power<br>Operations, per rcry     | LOOP   | 10                  | 1388.9                      | Gamma        | EB/PL/KS         | 1.34E-04 | 4.25E-03          | 7.21E-03          | 2.44E-02   | 0.7  | 9.88E+01 | 5.7             | 20062020           |
| Lc                      |                                                     | SD.LOOP          | Loss-of-Offsite-Power, All<br>Categories, Shutdown<br>Operations, per rsy    | RADS   | 17                  | 127.2                       | Gamma        | JNID/IL          | 8.84E-02 | 1.35E-01          | 1.38E-01          | 1.96E-01   | 17.5 | 1.27E+02 | 1.5             | 20062020           |
|                         | Loss of Offsite<br>Power,<br>Shutdown<br>Operations | SD.LOOP-GR       | Loss-of-Offsite-Power, Grid-<br>Related, Shutdown<br>Operations, per rsy     | RADS   | 2                   | 127.2                       | Gamma        | JNID/IL          | 4.51E-03 | 1.71E-02          | 1.97E-02          | 4.36E-02   | 2.5  | 1.27E+02 | 2.5             | 20062020           |
|                         | operations                                          | SD.LOOP-PC       | Loss-of-Offsite-Power, Plant-<br>Centered, Shutdown<br>Operations, per rsy   | RADS   | 3                   | 127.2                       | Gamma        | JNID/IL          | 8.53E-03 | 2.50E-02          | 2.75E-02          | 5.54E-02   | 3.5  | 1.27E+02 | 2.2             | 20062020           |

|        |                |                  |                                                                                |                  | Data                |                             |              |                  | Indus    | stry-average Freq | uency Distributio | on (note a) |      |          |                 |                    |
|--------|----------------|------------------|--------------------------------------------------------------------------------|------------------|---------------------|-----------------------------|--------------|------------------|----------|-------------------|-------------------|-------------|------|----------|-----------------|--------------------|
| Cat.   | Sub-Category   | Initiating Event | Description                                                                    | Source           | Number<br>of Events | Critical<br>Years<br>(rcry) | Distribution | Analysis<br>Type | 5th      | Median            | Mean              | 95th        | α    | β        | Error<br>Factor | Baseline<br>Period |
|        |                | SD.LOOP-SC       | Loss-of-Offsite-Power,<br>Switchyard-Centered,<br>Shutdown Operations, per rsy | RADS             | 8                   | 127.2                       | Gamma        | JNID/IL          | 3.41E-02 | 6.43E-02          | 6.68E-02          | 1.09E-01    | 8.5  | 1.27E+02 | 1.7             | 20062020           |
|        |                | SD.LOOP-WR       | Loss-of-Offsite-Power,<br>Weather-Related, Shutdown<br>Operations, per rsy     | RADS             | 4                   | 127.2                       | Gamma        | JNID/IL          | 1.31E-02 | 3.28E-02          | 3.54E-02          | 6.66E-02    | 4.5  | 1.27E+02 | 2.0             | 20062020           |
|        |                | LOAC             | Loss of Vital AC Bus                                                           | RADS             | 16                  | 2635.4                      | Gamma        | JNID/IL          | 3.95E-03 | 6.12E-03          | 6.26E-03          | 8.98E-03    | 16.5 | 2.64E+03 | 1.5             | 19922020           |
| 5      | Loss of AC     | LOAC 4160V FI    | Loss of Vital AC Bus (4160<br>Volt)                                            | RADS             | 11                  | 2635.4                      | Gamma        | EB/PL/KS         | 3.34E-04 | 3.10E-03          | 4.16E-03          | 1.16E-02    | 1.2  | 2.93E+02 | 3.8             | 19922020           |
| Power  | Electrical Bus | LOAC LOWV FI     | Loss of Vital AC Bus (Low<br>Voltage)                                          | RADS             | 5                   | 2635.4                      | Gamma        | JNID/IL          | 8.66E-04 | 1.96E-03          | 2.09E-03          | 3.73E-03    | 5.5  | 2.64E+03 | 1.9             | 19922020           |
| trical |                | LOACB2           | Loss of Vital AC Bus Event<br>(2 Buses modeled as IEs)                         | RADS<br>Adjusted | (note c)            |                             | Gamma        | JNID/IL          | 3.15E-07 | 7.17E-04          | 2.94E-03          | 1.34E-02    | 0.3  | 1.02E+02 | 18.8            | 19922020           |
| Elect  | Loss of DC     | LODC             | Loss of Vital DC Bus                                                           | RADS             | 2                   | 2951.7                      | Gamma        | JNID/IL          | 1.94E-04 | 7.38E-04          | 8.47E-04          | 1.88E-03    | 2.5  | 2.95E+03 | 2.5             | 19882020           |
|        | Electrical Bus | LODCB2           | Loss of Vital DC Bus Event<br>(2 Buses modeled as IEs)                         | RADS<br>Adjusted | (note c)            |                             | Gamma        | JNID/IL          | 4.53E-08 | 1.03E-04          | 4.24E-04          | 1.94E-03    | 0.3  | 7.08E+02 | 18.8            | 19882020           |

Acronyms - BWR (boiling water reactor), CCW (component cooling water), EB (empirical Bayes), EE (expert elicitation), FI (functional impact), FWLB (feedwater line break), GR (grid-related), IE (initiating events database - https://rcco.inl.gov), IL (industry level), ISLOCA (interfacing system loss-of-coolant accident), KS (Kass-Steffey), JNID (Jeffreys noninformative distribution), LOCCW (loss of component cooling water), LLOCA (large loss-of-coolant event), LOAC (loss of vital ac bus), LOCHS (loss of condenser heat sink), LODC (loss of vital dc bus), LOIA (loss of instrument air), LOMFW (loss of main feedwater), LOOP (loss-of-offsite-power), LOSWS (loss of emergency service water), MLOCA (medium loss-of-accident accident), PC (plant-centered), PL (plant level), PLOCCW (partial loss of component cooling water), PLOSWS (partial loss of emergency service water), PO (power operations), PWR (pressurized water reactor), RADS (Reliability and Availability Database System), rcry (reactor coolant pump seal loss-of-coolant accident), rsy (reactor shutdown year), SC (switchyard-centered), SD (shutdown operations), SUCCA (excessive loss-of-coolant accident), SUCCA (small loss-of-coolant accident), SORV (stuck open safety/relief valve), TRANS (transient), VSLOCA (very small loss-of-coolant accident), WR (weather-related), WR (weather-related), WR (weather-related), WR (weather-related), WR (weather-related), SORV (stuck open safety/relief valve), TRANS (transient), VSLOCA (very small loss-of-coolant accident), WR (weather-related), WR (weather-rela

Note a - If these distributions are to be used as priors in Bayesian updates using plant-specific data, then a check for consistency between the prior and the data should be performed first, as suggested in supporting requirement DA-D4c in ASME/ANS RA-Sa-2009 and outlined in Section 6.2.3.5 of NUREG/CR-6823.

Note b - The NUREG-1829 results are used as the prior to Bayesian update the newer observed data.

Note c - The mean value of the loss of two AC (or DC) buses frequency are calculated by dividing the mean value of the loss of one vital AC (or DC) bus.

# 6. COMPARISON WITH PREVIOUS RESULTS

This section compares the data and results in this update with those in the 2015 update. Table 5 provides a comparison of current component UR results with those in the 2015 update (only component failure mode templates with 50% increase or decrease are listed). Table 6 presents a comparison of train UA results with those in the 2015 update. Table 7 presents a comparison of initiating event results with those in the 2015 update.

With the UR data from 2006–2020 used in this update, older data from 1998–2005, which represent nearly half of the data represented in the 2015 update (from 1998–2015), were excluded from the analysis, and thus the results in this update could be significantly different from the values in the 2015 update. Of about 300 UR templates, there are 20 templates that have a 50% or more increase from the 2015 update values (red highlighted in Table 5), and there are 60 templates that have a 50% or more decrease from the 2015 update values (blue highlighted in Table 5). For the top seven most increased (four times or bigger) UR templates,

- Four of them (PORV-FC-MSS, SVV-FTC-PWR-RCS, SVV-FTC-PWR-MSS, PORV-FTC-RCS) are related to the updated RV study that uses actual demand data only instead of both demand and testing data in the original NUREG/CR-7037 study (which was used as the basis for the 2015 values).
- For MDP-FTR-SWS-NE that is used for SPAR template ZT-IE-SWS-MDP-FR-NE, the mean hourly failure rate increases from 1.5E-7 in the 2015 update to 4.2E-6 in this update. This is due to the changes in the associated RADS rule that estimate the parameter. The 2015 RADS rule (named MDP-FE-SWS) erroneously included standby service water MDP FTR failure mode, which led to 2 failures in 16,692,670 hours and a mean failure rate of 1.5E-7 per hour. This was found to be incorrect since standby pumps should use FTR<1H and FTR>1H failure modes while normally running pumps should use the FTR failure mode. After discussion with the SPAR modeler, the rule was revised so that both normally running and standby service water MDPs use both FTR<1H and FTR>1H failure modes. This rule change led to 100 failures in 25,635,460 hours and the mean failure rate of 4.2E-06 per hour listed above.
- The other two templates EDC-FTR>1H and MDC-FTR<1H have much different results as a result of re-running the associated RADS reliability rule: 19 failures in 1,735 hours instead of 0 failure in 1,735 hours in the 2015 update documentation for EDC-FTR>1H; 0 failure in 24,111 hours instead of 22 failures in 1,683,943 hours in the 2015 update documentation for MDC-FTR<1H. It is believed that errors may have occurred when developing or running the associated RADS rules during the 2015 update.

The differences in UA results are smaller as this update used data from 2006–2020 and the 2015 update used data from 2002–2015. Of the 40 updated UA templates, 12 templates have a 10% or more increase from the 2015 update (red highlighted in Table 6), and 9 templates have a 10% or more decrease (blue highlighted in Table 6).

Of the 49 initiating events, six categories (loss of safety related cooling water – open system, loss of safety related cooling water – closed system, plant-centered loss-of-offsite-power during power operations, plant-centered loss-of-offsite-power during shutdown operations, weather-related loss-of-offsite-power during power operations, and loss of vital AC bus – 4160 volt) have a 10% or more increase from the 2015 update (red highlighted in Table 7). Thirty-four categories have a 10% or more decrease from the 2015 update (blue highlighted in Table 7).

| Component Failure   |                                                                                | 201      | 5 Update (1998–2    | 2015)    |          | <b>2020 Update</b> (2 | 2006–2020) |              |
|---------------------|--------------------------------------------------------------------------------|----------|---------------------|----------|----------|-----------------------|------------|--------------|
| Mode                | Description                                                                    | Failures | Demands or<br>Hours | Mean     | Failures | Demands or<br>Hours   | Mean       | Δ of<br>Mean |
| PORV-FC-MSS         | Power-Operated Relief Fails To Control (Cooldown)<br>(Main Steam System, PWRs) | 13       | 49,398,360          | 2.57E-07 | 7        | 278                   | 2.69E-02   | 1.0E+05      |
| SVV-FTC-PWR-<br>RCS | Safety Valve Fails To Close (Reactor Coolant System, PWRs)                     | 1        | 2,907               | 5.16E-04 | 2        | 4                     | 4.13E-02   | 79.0         |
| SVV-FTC-PWR-<br>MSS | Safety Valve Fails To Close (Main Steam System,<br>PWRs)                       | 2        | 20,243              | 1.23E-04 | 4        | 745                   | 6.03E-03   | 48.0         |
| MDP-FTR-SWS-NE      | Service Water Motor-Driven Pump Fails To Run<br>Non-ExEE                       | 2        | 16,692,670          | 1.50E-07 | 100      | 25,635,460            | 4.2E-06    | 27.0         |
| EDC-FTR>1H          | Engine-Driven Compressor Fails To Run >1H,<br>Normally Standby                 | 0        | 1,735               | 2.88E-04 | 12       | 1,609                 | 7.77E-03   | 26.0         |
| MDC-FTR<1H          | Motor-Driven Compressor Fails To Run (0 To 1<br>Hour)                          | 22       | 1,683,943           | 1.34E-05 | 1        | 20,248                | 7.41E-05   | 4.5          |
| PORV-FTC-RCS        | Power-Operated Relief Valve Fails To Close (Reactor<br>Coolant System, PWRs)   | 4        | 6,130               | 7.34E-04 | 1        | 377                   | 3.97E-03   | 4.4          |
| EDC-FTR<1H          | Engine-Driven Compressor Fails To Run <1H,<br>Normally Standby                 | 0        | 2,122               | 2.36E-04 | 1        | 1,459                 | 1.03E-03   | 3.4          |
| MDC-FTR>1H          | Motor-Driven Compressor Fails To Run (> 1 Hour)                                | 22       | 1,683,943           | 1.34E-05 | 90       | 1,573,366             | 5.75E-05   | 3.3          |
| PORV-FTO-RCS        | Power-Operated Relief Valve Fails To Open (Reactor<br>Coolant System, PWRs)    | 16       | 6,130               | 3.24E-03 | 4        | 377                   | 1.19E-02   | 2.7          |
| BUS-FTOP-DC         | DC Bus Fails To Operate                                                        | 0        | 2,305,320           | 2.17E-07 | 1        | 2,103,936             | 7.13E-07   | 2.3          |
| PORV-FTO-MSS        | Power-Operated Relief Valve Fails To Open (Main Steam System, PWRs)            | 42       | 10,401              | 4.91E-03 | 25       | 1,580                 | 1.61E-02   | 2.3          |
| TDP-FTR>1H          | Turbine-Driven Pump Fails To Run (Pooled<br>Systems), Late Term                | 23       | 11,205              | 2.10E-03 | 17       | 4,454                 | 6.35E-03   | 2.0          |
| SVV-FTO-PWR-<br>MSS | Safety Valve Fails To Open+D174 PWRs)                                          | 4        | 20,243              | 2.22E-04 | 0        | 745                   | 6.70E-04   | 2.0          |
| EDG-FTS-HCS         | High-Pressure Core Spray Generator Fails To Start                              | 2        | 2,654               | 9.42E-04 | 4        | 2,114                 | 2.13E-03   | 1.3          |
| CTF-FTR-NR          | Cooling Tower Fan Fails To Run                                                 | 3        | 1,504,717           | 2.33E-06 | 6        | 1,253,930             | 5.18E-06   | 1.2          |
| PORV-FTC-MSS        | Power-Operated Relief Fails To Close (Main Steam System, PWRs)                 | 19       | 10,401              | 2.21E-03 | 7        | 1,580                 | 4.35E-03   | 96.8%        |

## Table 5. Comparison of component UR data and results with 2015 update.

| Component Failure   |                                                               | 201      | 5 Update (1998–2    | 2015)    |          | 2020 Update (2      | 2006–2020) |              |
|---------------------|---------------------------------------------------------------|----------|---------------------|----------|----------|---------------------|------------|--------------|
| Mode                | Description                                                   | Failures | Demands or<br>Hours | Mean     | Failures | Demands or<br>Hours | Mean       | Δ of<br>Mean |
| TDP-FTR>1H-AFW      | Auxiliary Feedwater Turbine-Driven Pump FTR>1H                | 13       | 9,283               | 1.45E-03 | 8        | 3,295               | 2.58E-03   | 77.9%        |
| EDP-FTR>1H          | Engine-Driven Pump FTR>1H, Normally Standby                   | 11       | 5,820               | 1.98E-03 | 15       | 4,754               | 3.26E-03   | 64.6%        |
| TNK-FC              | Tank Rupture                                                  | 15       | 59,350,270          | 2.61E-07 | 16       | 46,469,300          | 4.18E-07   | 60.2%        |
| MOD-FTOC            | Motor-Operated Damper Fails To Open                           | 7        | 33,254              | 2.26E-04 | 11       | 28,949              | 3.56E-04   | 57.5%        |
| MOV-ILS             | Motor-Operated Valve Internal Leakage (Small)                 | 141      | 1,983,522,000       | 7.58E-08 |          | 1,634,537,000       | 3.61E-08   | -52.4%       |
| MOV-ILL             | Motor-Operated Valve Internal Leakage (Rupture)               | 141      | 1,983,522,000       | 1.52E-09 |          |                     | 7.22E-10   | -52.5%       |
| MOV-BFV-SOP-<br>CCW | Component Cooling Water Butterfly Valve Spurious<br>Operation | 6        | 106,466,800         | 6.11E-08 |          | 86,552,190          | 2.89E-08   | -52.7%       |
| TDP-FTR<1H-AFW      | Auxiliary Feedwater Turbine-Driven Pump FTR<1H                | 40       | 12,076              | 3.67E-03 |          | 10,670              | 1.73E-03   | -52.9%       |
| EDP-FTS-AFW         | Auxiliary Feedwater Engine-driven pump Fails To<br>Start      | 3        | 1,275               | 2.74E-03 |          | 1,163               | 1.29E-03   | -52.9%       |
| SVV-ILL             | Code Safety Valve Internal Leakage (Rupture)                  | 14       | 211,426,600         | 1.37E-09 |          |                     | 6.40E-10   | -53.3%       |
| SVV-ILS             | Code Safety Valve Internal Leakage (Small)                    | 14       | 211,426,600         | 6.86E-08 |          | 171,647,800         | 3.20E-08   | -53.4%       |
| MSV-ILL             | Main Steam Isolation Valve Internal Leakage<br>(Rupture)      | 63       | 79,241,950          | 1.60E-08 |          |                     | 7.14E-09   | -55.4%       |
| MSV-ILS             | Main Steam Isolation Valve Internal Leakage (Small)           | 63       | 79,241,950          | 8.01E-07 |          | 65,768,320          | 3.57E-07   | -55.4%       |
| FAN-FTS-NS          | HVC Fan Fails To Start, Normally Standby                      | 37       | 57,512              | 6.52E-04 |          | 63,511              | 2.76E-04   | -57.7%       |
| AOV-ILL             | Air-Operated Valve Internal Leakage (Rupture)                 | 104      | 1,347,257,000       | 1.55E-09 |          |                     | 6.40E-10   | -58.7%       |
| AOV-ILS             | Air-Operated Valve Internal Leakage (Small)                   | 104      | 1,347,257,000       | 7.76E-08 |          | 1,109,287,000       | 3.20E-08   | -58.8%       |
| MOD-ILS             | Motor-Operated Damper Internal Leakage (Small)                | 1        | 17,147,900          | 8.75E-08 |          | 14,134,270          | 3.54E-08   | -59.5%       |
| MOD-ILL             | Motor-Operated Damper Internal Leakage (Rupture)              | 1        | 17,147,900          | 1.75E-09 |          |                     | 7.08E-10   | -59.5%       |
| CRBDC-SOP           | DC Circuit Breaker Spurious Operation                         | 1        | 42,345,960          | 3.54E-08 |          | 34,938,600          | 1.43E-08   | -59.6%       |
| VBV-SOP             | Vacuum Breaker Valve Spurious Operation                       | 1        | 52,796,540          | 2.84E-08 |          | 43,685,040          | 1.14E-08   | -59.9%       |
| MDC-FTS-NR          | Motor-Driven Compressor Fails To Start, Normally Running      | 109      | 9,197               | 3.41E-02 |          | 7,855               | 1.36E-02   | -60.1%       |
| STR-FLTSC-BYP       | Self Cleaning Filter Bypass                                   | 1        | 25,738,850          | 5.83E-08 |          | 21,560,060          | 2.32E-08   | -60.2%       |
| AHU-FTR-NR          | Air Handling Unit Fails To Run, Normally Running              | 62       | 17,498,560          | 6.65E-06 |          | 15,131,330          | 2.61E-06   | -60.8%       |
| XVM-ILS             | Manual Valve Internal Leakage (Small)                         | 7        | 128,295,300         | 6.88E-08 |          | 132,674,000         | 2.64E-08   | -61.6%       |
| XVM-ILL             | Manual Valve Internal Leakage (Rupture)                       | 7        | 128,295,300         | 1.38E-09 |          |                     | 5.28E-10   | -61.7%       |

| Component Failure |                                                            | 201      | .5 Update (1998–2   | 2015)    |          | 2020 Update (2      | 2006–2020) |              |
|-------------------|------------------------------------------------------------|----------|---------------------|----------|----------|---------------------|------------|--------------|
| Mode              | Description                                                | Failures | Demands or<br>Hours | Mean     | Failures | Demands or<br>Hours | Mean       | Δ of<br>Mean |
| AHU-FTS-NS        | Air Handling Unit Fails To Start, Normally Standby         | 55       | 149,242             | 5.57E-04 |          | 158,866             | 2.11E-04   | -62.1%       |
| SOV-FC            | Solenoid-Operated Valve Fails To Control                   | 58       | 143,582,100         | 4.07E-07 |          | 115,760,700         | 1.52E-07   | -62.7%       |
| XVM-SOP           | Manual Valve Spurious Operation                            | 6        | 128,295,300         | 5.07E-08 |          | 132,674,000         | 1.88E-08   | -62.9%       |
| TSA-BYP           | Traveling Screen Bypass                                    | 8        | 30,417,290          | 2.79E-07 |          | 25,155,920          | 9.94E-08   | -64.4%       |
| EDP-FTS-NS        | Engine-Driven Pump Fails To Start, Normally Standby        | 26       | 17,988              | 2.17E-03 |          | 17,773              | 7.60E-04   | -65.0%       |
| CKV-ILS           | Check Valve Internal Leakage (Small)                       | 143      | 977,258,600         | 2.08E-07 |          | 806,744,700         | 7.25E-08   | -65.1%       |
| CKV-ILL           | Check Valve Internal Leakage (Rupture)                     | 143      | 977,258,600         | 4.16E-09 |          |                     | 1.45E-09   | -65.1%       |
| HOD-SOP           | Hydraulic-Operated Damper Spurious Operation               | 8        | 19,397,950          | 4.38E-07 |          | 16,454,520          | 1.52E-07   | -65.3%       |
| HTG-FTLR          | Hydro Turbine Generator Fails To Load And Run,<br>Early    | 7        | 4,629               | 1.62E-03 |          | 4,582               | 5.46E-04   | -66.3%       |
| RVL-ILS           | Low Capacity Relief Valve Internal Leakage (Small)         | 11       | 9,633,048           | 1.19E-06 |          | 9,165,162           | 3.82E-07   | -67.9%       |
| RVL-ILL           | Low Capacity Relief Valve Internal Leakage<br>(Rupture)    | 11       | 9,633,048           | 2.38E-08 |          |                     | 7.64E-09   | -67.9%       |
| VBV-FTOC          | Vacuum Breaker Valve Fails To Open/Close                   | 8        | 27,842              | 3.37E-04 |          | 23,202              | 1.08E-04   | -68.0%       |
| VBV-FTC           | Vacuum Breaker Valve Fails To Close                        | 6        | 27,842              | 2.15E-04 |          | 23,202              | 6.46E-05   | -70.0%       |
| FCV-SOP           | Flow Control Valve Spurious Operation                      | 10       | 88,861,090          | 1.18E-07 |          | 73,637,280          | 3.40E-08   | -71.2%       |
| CKV-SOP           | Check Valve Spurious Operation                             | 2        | 977,258,600         | 2.56E-09 |          | 806,744,700         | 6.20E-10   | -75.8%       |
| TNK-GAS-ELS       | Gas Tank Small Leakage External Leakage (Small)            | 2        | 5,048,832           | 4.95E-07 |          | 4,207,872           | 1.19E-07   | -76.0%       |
| TNK-GAS-ELL       | Gas Tank Small Leakage External Leakage (Rupture)          | 2        | 5,048,832           | 3.47E-08 |          |                     | 8.33E-09   | -76.0%       |
| CTFFTR>1H         | Cooling Tower Fan Fails To Run >1H (Standby)               | 2        | 1,073,115           | 2.33E-06 |          | 895,323             | 5.58E-07   | -76.1%       |
| AOD-FTOC          | Air-Operated Damper Fails To Open/Close                    | 2        | 7,799               | 3.21E-04 |          | 6,602               | 7.57E-05   | -76.4%       |
| PORV-ILS          | Power-Operated Relief Valve Internal Leakage (Small)       | 18       | 69,470,980          | 2.66E-07 |          | 57,223,460          | 6.12E-08   | -77.0%       |
| PORV-ILL          | Power-Operated Relief Valve Internal Leakage<br>(Rupture)  | 18       | 69,470,980          | 5.32E-09 |          |                     | 1.22E-09   | -77.1%       |
| PDP-FTR>1H        | Positive Displacement Pump FTR>1H                          | 2        | 1,710               | 1.46E-03 |          | 1,505               | 3.32E-04   | -77.3%       |
| STR-FLTSC-ELL     | Self Cleaning Filter External Leakage (Rupture)            | 14       | 25,738,850          | 3.94E-08 |          |                     | 8.12E-09   | -79.4%       |
| STR-FLTSC-ELS     | Self Cleaning Filter External Leakage (Small)              | 14       | 25,738,850          | 5.63E-07 |          | 21,560,060          | 1.16E-07   | -79.4%       |
| XVM-SOP-SWS       | Standby Service Water Manual Valve Spuriously<br>Transfers | 2        | 18,346,180          | 1.36E-07 |          | 18,055,700          | 2.77E-08   | -79.6%       |

| <b>Component Failure</b> | Development                                                        | 201      | 5 Update (1998–2    | 2015)    |          | 2020 Update (2      | 2006–2020) |              |
|--------------------------|--------------------------------------------------------------------|----------|---------------------|----------|----------|---------------------|------------|--------------|
| Mode                     | Description                                                        | Failures | Demands or<br>Hours | Mean     | Failures | Demands or<br>Hours | Mean       | Δ of<br>Mean |
| TBV-FTO                  | Turbine Bypass Valve Fails To Open                                 | 8        | 2,725               | 3.12E-03 |          | 2,367               | 6.33E-04   | -79.7%       |
| TBV-FTOC                 | Turbine Bypass Valve Fails To Open/Close                           | 8        | 2,725               | 3.12E-03 |          | 2,367               | 6.33E-04   | -79.7%       |
| VBV-ILS                  | Vacuum Breaker Valve Internal Leakage (Small)                      | 15       | 52,796,540          | 2.94E-07 |          | 43,685,040          | 5.72E-08   | -80.5%       |
| VBV-ILL                  | Vacuum Breaker Valve Internal Leakage (Rupture)                    | 15       | 52,796,540          | 5.88E-09 |          |                     | 1.14E-09   | -80.6%       |
| MDC-FTR-CIA              | Containment Instrument Air Motor-Driven<br>Compressor Fails To Run | 3        | 118,273             | 2.96E-05 | 0        | 98,561              | 5.07E-06   | -82.9%       |
| TRK-PG                   | Trash Rack Plugging                                                | 3        | 1,577,760           | 2.23E-06 | 0        | 1,314,960           | 3.80E-07   | -83.0%       |
| MOV-SOP-SWS              | Standby Service Water Motor-Operated Valve<br>Spurious Operation   | 3        | 73,067,170          | 4.79E-08 | 0        | 64,725,970          | 7.72E-09   | -83.9%       |
| SVV-SOP                  | Code Safety Valve Spurious Operation                               | 11       | 211,426,600         | 5.44E-08 | 1        | 171,647,800         | 8.74E-09   | -83.9%       |
| SRV-FTC                  | BWR ADS/SRV Fails To Reclose                                       | 8        | 9,720               | 8.86E-04 | 0        | 3,548               | 1.41E-04   | -84.1%       |
| FAN-FTR>1H               | HVC Fan FTR>1H, Normally Standby                                   | 27       | 137,892             | 1.99E-04 | 3        | 120,200             | 2.91E-05   | -85.4%       |
| HOD-FTOC                 | Hydraulic-Operated Damper Fails To Open/Close                      | 11       | 6,225               | 5.57E-03 | 4        | 6,113               | 7.36E-04   | -86.8%       |
| FCV-FTOC                 | Flow Control Valve Fails To Open/Close                             | 5        | 12,488              | 4.40E-04 | 0        | 11,345              | 4.41E-05   | -90.0%       |
| SVV-SOP-PWR-<br>MSS      | Safety Valve Spurious Operation (Main Steam System, PWRs)          | 8        | 172,245,500         | 4.93E-08 | 0        | 140,068,800         | 3.57E-09   | -92.8%       |
| RVL-FTO                  | Low Capacity Relief Valve Fails To Open                            | 5        | 78                  | 1.07E-01 | 0        | 65                  | 7.59E-03   | -92.9%       |

Note: refer to Table 1 for acronyms used in this table.

| Train                   | parison of train UA data and results w                                      |          | Update        |          | 2020 Update   |              |
|-------------------------|-----------------------------------------------------------------------------|----------|---------------|----------|---------------|--------------|
| Unavailability<br>Event | Train Description                                                           | Mean     | Date<br>Range | Mean     | Date<br>Range | Δ of<br>Mean |
| HDR-RHRSW               | RHRSW Header Test or Maintenance                                            | 1.20E-03 | 20022015      | 2.81E-03 | 20062020      | 134.2%       |
| EDP                     | Engine-Driven Pump Test or Maintenance                                      | 1.64E-02 | 20022015      | 2.27E-02 | 20062020      | 38.4%        |
| HDR-AFW                 | AFW Header Test or Maintenance                                              | 5.61E-04 | 20022015      | 7.70E-04 | 20062020      | 37.3%        |
| HCS-SW                  | Service Water for High Pressure Core Spray<br>Generator Test or Maintenance | 5.54E-03 | 20022015      | 7.32E-03 | 20062020      | 32.1%        |
| MDP-ESW                 | Motor-Driven Pump Test or Maintenance<br>(ESW)                              | 9.66E-03 | 20022015      | 1.24E-02 | 20062020      | 28.4%        |
| MDP-NR-<br>DIRTY        | Motor-Driven Pump Test or Maintenance<br>(Normally Running System, Dirty)   | 9.66E-03 | 20022015      | 1.24E-02 | 20062020      | 28.4%        |
| EDG-SW                  | Service Water for Emergency Diesel<br>Generator Test or Maintenance         | 9.17E-03 | 20022015      | 1.11E-02 | 20062020      | 21.0%        |
| MDP-NS-<br>DIRTY        | Motor-Driven Pump Test or Maintenance<br>(Normally Standby System, Dirty)   | 9.34E-03 | 20022015      | 1.13E-02 | 20062020      | 21.0%        |
| HTX-RHR-<br>BWR         | Heat Exchanger and Pump Train Test or<br>Maintenance (RHR-BWR)              | 2.55E-03 | 20022015      | 3.05E-03 | 20062020      | 19.6%        |
| EDG-HCS                 | HPCS Diesel Generator Test or<br>Maintenance                                | 1.17E-02 | 20022015      | 1.33E-02 | 20062020      | 13.7%        |
| HDR-RHR                 | RHR Header Test or Maintenance                                              | 6.36E-04 | 20022015      | 7.21E-04 | 20062020      | 13.4%        |
| HTX                     | Heat Exchanger Test or Maintenance                                          | 6.93E-03 | 20022015      | 7.63E-03 | 20062020      | 10.1%        |
| EDP-ESW                 | Engine-Driven Pump Test or Maintenance                                      | 2.89E-02 | 20022015      | 3.14E-02 | 20062020      | 8.7%         |
| MDP-CCW                 | Motor-Driven Pump Test or Maintenance<br>(CCW)                              | 4.46E-03 | 20022015      | 4.82E-03 | 20062020      | 8.1%         |
| MDP-RHRSW               | Motor-Driven Pump Test or Maintenance<br>(RHR Service Water)                | 4.55E-03 | 20022015      | 4.91E-03 | 20062020      | 7.9%         |
| MDP-NR-<br>CLEAN        | Motor-Driven Pump Test & Maintenance<br>(Normally Running System, Clean)    | 4.56E-03 | 20022015      | 4.90E-03 | 20062020      | 7.5%         |
| HTX-ESW                 | Heat Exchanger Test or Maintenance<br>(ESW)                                 | 1.50E-02 | 20022015      | 1.61E-02 | 20062020      | 7.3%         |
| HTX-CCW                 | Heat Exchanger Test or Maintenance<br>(CCW)                                 | 7.31E-03 | 20022015      | 7.73E-03 | 20062020      | 5.7%         |
| MDP-ALL                 | Motor-Driven Pump Test or Maintenance<br>(All Clean Systems)                | 6.21E-03 | 20022015      | 6.56E-03 | 20062020      | 5.6%         |
| MDP-HCS                 | Motor-Driven Pump Test or Maintenance<br>(HCS)                              | 7.35E-03 | 20022015      | 7.68E-03 | 20062020      | 4.5%         |
| EDG-EPS                 | Diesel Generator Test or Maintenance                                        | 1.48E-02 | 20022015      | 1.51E-02 | 20062020      | 2.0%         |
| TDP-ALL                 | Turbine-Driven Pump Test or Maintenance<br>(AFW, HPCI, and RCIC combined)   | 7.25E-03 | 20022015      | 7.30E-03 | 20062020      | 0.7%         |
| MDP-RHR-<br>BWR         | Motor-Driven Pump Test or Maintenance<br>(RHR-BWR)                          | 5.95E-03 | 20022015      | 5.92E-03 | 20062020      | -0.5%        |
| MDP-RHR                 | Motor-Driven Pump Test or Maintenance<br>(RHR)                              | 5.18E-03 | 20022015      | 5.09E-03 | 20062020      | -1.7%        |
| MDP-CLEAN               | Motor-Driven Pump Test or Maintenance<br>(Clean System)                     | 4.22E-03 | 20022015      | 4.14E-03 | 20062020      | -1.9%        |
| TDP-RCI                 | Turbine-Driven Pump Test or Maintenance (RCIC)                              | 1.04E-02 | 20022015      | 1.01E-02 | 20062020      | -2.9%        |
| MDP-RHR-<br>PWR         | Motor-Driven Pump Test or Maintenance<br>(RHR-PWR)                          | 4.81E-03 | 20022015      | 4.63E-03 | 20062020      | -3.7%        |
| TDP-HCI                 | Turbine-Driven Pump Test or Maintenance (HPCI)                              | 1.17E-02 | 20022015      | 1.11E-02 | 20062020      | -5.1%        |
| TDP-HCI-RCI             | Turbine-Driven Pump Test or Maintenance<br>(HPCI and RCIC combined)         | 1.17E-02 | 20022015      | 1.11E-02 | 20062020      | -5.1%        |

Table 6. Comparison of train UA data and results with 2015 update.

| Train                   |                                                                           | 2015     | Update        |          | 2020 Update   |              |
|-------------------------|---------------------------------------------------------------------------|----------|---------------|----------|---------------|--------------|
| Unavailability<br>Event | Train Description                                                         | Mean     | Date<br>Range | Mean     | Date<br>Range | Δ of<br>Mean |
| MDP-AFW                 | Motor-Driven Pump Test or Maintenance (AFW)                               | 3.34E-03 | 20022015      | 3.14E-03 | 20062020      | -6.0%        |
| MDP-HPI                 | Motor-Driven Pump Test or Maintenance (HPI)                               | 3.32E-03 | 20022015      | 2.99E-03 | 20062020      | -9.9%        |
| TDP-AFW                 | Turbine-Driven Pump Test or Maintenance (AFW)                             | 5.24E-03 | 20022015      | 4.64E-03 | 20062020      | -11.5%       |
| HTX-RHR-<br>PWR         | Heat Exchanger and Pump Train Test or Maintenance (RHR-BWR)               | 2.42E-04 | 20022015      | 2.09E-04 | 20062020      | -13.6%       |
| MDP-NS-<br>CLEAN        | Motor-Driven Pump Test or Maintenance<br>(Normally Standby System, Clean) | 4.60E-03 | 20022015      | 3.94E-03 | 20062020      | -14.3%       |
| EDP-AFW                 | Engine-Driven Pump Test or Maintenance                                    | 6.44E-03 | 20022015      | 5.47E-03 | 20062020      | -15.1%       |
| MDP-FWS                 | Feed Water System Motor-Driven Pumps<br>Test or Maintenance               | 9.44E-03 | 20022015      | 7.68E-03 | 20062020      | -18.6%       |
| HDR-CCW                 | CCW Header Test or Maintenance                                            | 3.17E-04 | 20022015      | 2.42E-04 | 20062020      | -23.7%       |
| HDR-ISO                 | ISO Header Test or Maintenance                                            | 4.01E-03 | 20022015      | 2.62E-03 | 20062020      | -34.7%       |
| HDR-HPI                 | HPSI Header Test or Maintenance                                           | 2.21E-04 | 20022015      | 1.36E-04 | 20062020      | -38.5%       |
| HDR-ESW                 | ESW Header Test or Maintenance                                            | 8.95E-03 | 20022015      | 4.61E-03 | 20062020      | -48.5%       |

Note: refer to Table 2 for acronyms used in this table

|                  |                                                                         |                        | 201                         | 5 Update |                    |                        |                             | 2020 Upda | te                 |              |
|------------------|-------------------------------------------------------------------------|------------------------|-----------------------------|----------|--------------------|------------------------|-----------------------------|-----------|--------------------|--------------|
| Initiating Event | Description                                                             | Number<br>of<br>Events | Critical<br>Years<br>(rcry) | Mean     | Baseline<br>Period | Number<br>of<br>Events | Critical<br>Years<br>(rcry) | Mean      | Baseline<br>Period | Δ of<br>Mean |
| LOSWS            | Loss of Safety Related Cooling Water<br>(Open System)                   | 0                      | 2496.3                      | 2.00E-04 | 19882015           | 1                      | 2951.7                      | 5.08E-04  | 19882020           | 154.0%       |
| LOCCW FI         | Loss of Safety Related Cooling Water<br>(Closed System)                 | 0                      | 2496.3                      | 2.00E-04 | 19882015           | 1                      | 2951.7                      | 5.08E-04  | 19882020           | 154.0%       |
| PO.LOOP-PC       | Loss-of-Offsite-Power, Plant-Centered,<br>Power Operations, per rcry    | 3                      | 1751.7                      | 2.00E-03 | 19972015           | 6                      | 1388.9                      | 4.68E-03  | 20062020           | 134.0%       |
| SD.LOOP-PC       | Loss-of-Offsite-Power, Plant-Centered,<br>Shutdown Operations, per rsy  | 7                      | 213.4                       | 2.11E-02 | 19972015           | 3                      | 127.2                       | 2.75E-02  | 20062020           | 30.3%        |
| LOAC 4160V FI    | Loss of Vital AC Bus (4160 Volt)                                        | 7                      | 2179.9                      | 3.44E-03 | 19922015           | 11                     | 2635.4                      | 4.16E-03  | 19922020           | 20.9%        |
| PO.LOOP-WR       | Loss-of-Offsite-Power, Weather-Related,<br>Power Operations, per rcry   | 10                     | 1751.7                      | 5.99E-03 | 19972015           | 10                     | 1388.9                      | 7.21E-03  | 20062020           | 20.4%        |
| LOAC             | Loss of Vital AC Bus                                                    | 12                     | 2179.9                      | 5.73E-03 | 19922015           | 16                     | 2635.4                      | 6.26E-03  | 19922020           | 9.2%         |
| SGTR             | Steam Generator Tube Rupture                                            | 2                      | 1502.7                      | 1.66E-03 | 19912015           | 3                      | 1962.4                      | 1.78E-03  | 19882020           | 7.2%         |
| SD.LOOP-GR       | Loss-of-Offsite-Power, Grid-Related,<br>Shutdown Operations, per rsy    | 4                      | 213.4                       | 1.90E-02 | 19972015           | 2                      | 127.2                       | 1.97E-02  | 20062020           | 3.7%         |
| LOACB2           | Loss of Vital AC Bus Event (2 Buses modeled as IEs)                     | 12                     | 2179.9                      | 2.87E-03 | 19922015           |                        |                             | 2.94E-03  | 19922020           | 2.4%         |
| XLOCA            | Excessive Loss-of-Coolant Accident<br>(Vessel Rupture)                  |                        |                             | 1.00E-07 |                    |                        |                             | 1.00E-07  |                    | 0.0%         |
| LLOCA PWR        | Large Loss-of-Coolant Accident (PWR)                                    |                        |                             | 5.91E-06 |                    | 0                      | 1096.5                      | 5.87E-06  | 20032020           | -0.7%        |
| LLOCA BWR        | Large Loss-of-Coolant Accident (BWR)                                    |                        |                             | 1.18E-05 |                    | 0                      | 573.8                       | 1.17E-05  | 20032020           | -0.8%        |
| MLOCA BWR        | Medium Loss-of-Coolant Accident (BWR)                                   |                        |                             | 9.05E-05 |                    | 0                      | 573.8                       | 8.75E-05  | 20032020           | -3.3%        |
| LOIA BWR         | Loss of Instrument Air (BWR)                                            | 5                      | 761.2                       | 7.23E-03 | 19912015           | 6                      | 916.9                       | 6.55E-03  | 19912020           | -9.4%        |
| SD.LOOP-WR       | Loss-of-Offsite-Power, Weather-Related,<br>Shutdown Operations, per rsy | 8                      | 213.4                       | 3.98E-02 | 19972015           | 4                      | 127.2                       | 3.54E-02  | 20062020           | -11.1%       |
| LOIA PWR         | Loss of Instrument Air (PWR)                                            | 9                      | 1153.5                      | 8.24E-03 | 19972015           | 10                     | 1453.3                      | 7.23E-03  | 19972020           | -12.3%       |
| MLOCA PWR        | Medium Loss-of-Coolant Accident (PWR)                                   |                        |                             | 1.50E-04 |                    | 0                      | 1096.5                      | 1.31E-04  | 20032020           | -12.7%       |
| SLOCA BWR        | Small Loss-of-Coolant Accident (BWR)                                    | 1                      | 418                         | 3.69E-04 |                    | 0                      | 573.8                       | 3.22E-04  | 20032020           | -12.7%       |
| LODCB2           | Loss of Vital DC Bus Event (2 Buses<br>modeled as IEs)                  | 2                      | 2496.3                      | 5.00E-04 | 19882015           |                        |                             | 4.24E-04  | 19882020           | -15.2%       |
| SLBIC PWR FI     | Steam Line Break Inside Containment (PWR)                               | 0                      | 1662.6                      | 3.01E-04 | 19882015           | 0                      | 1962.4                      | 2.55E-04  | 19882020           | -15.3%       |

## Table 7. Comparison of initiating event data and results with 2015 update.

|                  |                                                                              |                        | 201                         | 5 Update |                    |                        |                             | 2020 Upda | te                 |              |
|------------------|------------------------------------------------------------------------------|------------------------|-----------------------------|----------|--------------------|------------------------|-----------------------------|-----------|--------------------|--------------|
| Initiating Event | Description                                                                  | Number<br>of<br>Events | Critical<br>Years<br>(rcry) | Mean     | Baseline<br>Period | Number<br>of<br>Events | Critical<br>Years<br>(rcry) | Mean      | Baseline<br>Period | Δ of<br>Mean |
| LODC             | Loss of Vital DC Bus                                                         | 2                      | 2496.3                      | 1.00E-03 | 19882015           | 2                      | 2951.7                      | 8.47E-04  | 19882020           | -15.3%       |
| FWLB PWR FI      | Feedwater Line Break (PWR)                                                   | 2                      | 1662.6                      | 1.50E-03 | 19882015           | 2                      | 1962.4                      | 1.27E-03  | 19882020           | -15.3%       |
| SORV1 PWR FI     | Stuck Open Safety/Relief Valve (PWR)                                         | 2                      | 1662.6                      | 1.50E-03 | 19882015           | 2                      | 1962.4                      | 1.27E-03  | 19882020           | -15.3%       |
| SLBOC PWR FI     | Steam Line Break Outside Containment (PWR)                                   | 10                     | 1662.6                      | 6.32E-03 | 19882015           | 10                     | 1962.4                      | 5.35E-03  | 19882020           | -15.3%       |
| SORV2 BWR FI     | Stuck Open Relief Valve >2 (BWR)                                             | 0                      | 709.7                       | 7.05E-04 | 19932015           | 0                      | 838.6                       | 5.96E-04  | 19942020           | -15.5%       |
| PLOSWS FI        | Partial Loss of SWS Initiating Event                                         | 4                      | 2496.3                      | 1.80E-03 | 19882015           | 4                      | 2951.7                      | 1.52E-03  | 19882020           | -15.6%       |
| PLOCCW FI        | Partial Loss of CCW Initiating Event                                         | 4                      | 2496.3                      | 1.80E-03 | 19882015           | 4                      | 2951.7                      | 1.52E-03  | 19882020           | -15.6%       |
| SLBOC BWR FI     | Steam Line Break Outside Containment (BWR)                                   | 2                      | 833.7                       | 3.00E-03 | 19882015           | 2                      | 989.4                       | 2.53E-03  | 19882020           | -15.7%       |
| FWLB BWR FI      | Feedwater Line Break (BWR)                                                   | 0                      | 833.7                       | 6.00E-04 | 19882015           | 0                      | 989.4                       | 5.05E-04  | 19882020           | -15.8%       |
| VSLOCA PWR<br>FI | Very Small Loss-of-Coolant Accident<br>(PWR)                                 | 0                      | 1445                        | 3.46E-04 | 19922015           | 0                      | 1744.8                      | 2.87E-04  | 19922020           | -17.1%       |
| LOAC LOWV FI     | Loss of Vital AC Bus (Low Voltage)                                           | 5                      | 2179.9                      | 2.52E-03 | 19922015           | 5                      | 2635.4                      | 2.09E-03  | 19922020           | -17.1%       |
| VSLOCA BWR<br>FI | Very Small Loss-of-Coolant Accident (BWR)                                    | 2                      | 734.9                       | 3.40E-03 | 19922015           | 2                      | 890.6                       | 2.81E-03  | 19922020           | -17.4%       |
| SD.LOOP          | Loss-of-Offsite-Power, All Categories,<br>Shutdown Operations, per rsy       | 36                     | 213.4                       | 1.69E-01 | 19972015           | 17                     | 127.2                       | 1.38E-01  | 20062020           | -18.3%       |
| SD.LOOP-SC       | Loss-of-Offsite-Power, Switchyard-<br>Centered, Shutdown Operations, per rsy | 17                     | 213.5                       | 8.20E-02 | 19972015           | 8                      | 127.2                       | 6.68E-02  | 20062020           | -18.5%       |
| PO.LOOP          | Loss-of-Offsite-Power, All Categories,<br>Power Operations, per rcry         | 54                     | 1751.7                      | 3.11E-02 | 19972015           | 35                     | 1388.9                      | 2.52E-02  | 20062020           | -19.0%       |
| SLOCA PWR        | Small Loss-of-Coolant Accident (PWR)                                         | 0                      | 797                         | 4.01E-04 |                    | 0                      | 1096.5                      | 3.09E-04  | 20032020           | -22.9%       |
| TRANS PWR        | Transient Initiating Event (PWR)                                             | 743                    | 1100.6                      | 6.76E-01 | 19982015           | 300                    | 596.5                       | 5.18E-01  | 20112020           | -23.4%       |
| TRANS BWR        | Transient Initiating Event (BWR)                                             | 441                    | 598.2                       | 7.40E-01 | 19972015           | 173                    | 316.7                       | 5.55E-01  | 20112020           | -25.0%       |
| PO.LOOP-SC       | Loss-of-Offsite-Power, Switchyard-<br>Centered, Power Operations, per rcry   | 23                     | 1751.7                      | 1.34E-02 | 19972015           | 12                     | 1388.9                      | 9.00E-03  | 20062020           | -32.8%       |
| SORV1 BWR FI     | Stuck Open Safety/Relief Valve (BWR)                                         | 9                      | 709.7                       | 1.26E-02 | 19932015           | 7                      | 838.6                       | 8.32E-03  | 19942020           | -34.0%       |
| SORV2 PWR FI     | Stuck Open Relief Valve >2 (PWR)                                             | 0                      | 1100.6                      | 4.54E-04 | 19982015           | 0                      | 1962.4                      | 2.55E-04  | 19882020           | -43.8%       |
| LOCHS PWR FI     | Loss of Condenser Heat Sink (PWR)                                            | 61                     | 1271.4                      | 4.82E-02 | 19952015           | 23                     | 909.8                       | 2.53E-02  | 20062020           | -47.5%       |
| PO.LOOP-GR       | Loss-of-Offsite-Power, Grid-Related,<br>Power Operations, per rcry           | 18                     | 1751.7                      | 1.10E-02 | 19972015           | 7                      | 1388.9                      | 5.40E-03  | 20062020           | -50.9%       |

|                  |                                                              |                        | 201                         | 5 Update |                    | 2020 Update            |                             |          |                    |              |
|------------------|--------------------------------------------------------------|------------------------|-----------------------------|----------|--------------------|------------------------|-----------------------------|----------|--------------------|--------------|
| Initiating Event | Description                                                  | Number<br>of<br>Events | Critical<br>Years<br>(rcry) | Mean     | Baseline<br>Period | Number<br>of<br>Events | Critical<br>Years<br>(rcry) | Mean     | Baseline<br>Period | Δ of<br>Mean |
| LOCHS BWR FI     | Loss of Condenser Heat Sink (BWR)                            | 69                     | 626.6                       | 1.10E-01 | 19962015           | 16                     | 381.9                       | 4.19E-02 | 20092020           | -61.9%       |
| LOMFW            | Loss of Main Feedwater                                       | 124                    | 2096.3                      | 5.94E-02 | 19932015           | 20                     | 913.2                       | 2.19E-02 | 20112020           | -63.1%       |
| ISLOCA BWR FI    | Interfacing System Loss-of-Coolant<br>Accident (BWR)         | 0                      | 323.4                       | 1.55E-03 | 20062015           | 0                      | 989.4                       | 5.05E-04 | 19882020           | -67.4%       |
| ISLOCA PWR FI    | Interfacing System Loss-of-Coolant<br>Accident (PWR)         | 0                      | 610                         | 8.20E-04 | 20062015           | 0                      | 1962.4                      | 2.55E-04 | 19882020           | -68.9%       |
| RCPLOCA          | Reactor Coolant Pump Seal Loss-of-<br>Coolant Accident (PWR) | 0                      | 610                         | 8.20E-04 | 20062015           | 0                      | 1962.4                      | 2.55E-04 | 19882020           | -68.9%       |

Note: refer to Table 4 for acronyms used in this table

# 7. REFERENCES

- P. O'Reilly et al., "The NRC's SPAR Model Enhancement Program: Objectives, Status, Implications," International Topical Meeting on Probabilistic Safety Analysis PSA'05, American Nuclear Society, Inc., 2005.
- [2] S.A. Eide et al., Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants, U.S. Nuclear Regulatory Commission, NUREG/CR-6928 (INL/EXT-06-11119), January 2007.
- [3] U.S. Nuclear Regulatory Commission, "Component Reliability Data Sheets, 2010 Update", https://nrcoe.inl.gov/publicdocs/AvgPerf/ComponentUR2010.pdf, September 2012.
- [4] U.S. Nuclear Regulatory Commission, "Component Unavailability Data Sheets, 2010 Update", https://nrcoe.inl.gov/publicdocs/AvgPerf/TrainUA2010.pdf, January 2012.
- [5] U.S. Nuclear Regulatory Commission, "Initiating Event Data Sheets, 2010 Update", https://nrcoe.inl.gov/publicdocs/AvgPerf/InitiatingEvents2010.pdf, January 2012.
- [6] U.S. Nuclear Regulatory Commission, "System Special Event Summaries, 2010 Update", https://nrcoe.inl.gov/publicdocs/AvgPerf/SpecialEvents2010.pdf, January 2012.
- [7] U.S. Nuclear Regulatory Commission, "Component Reliability Data Sheets, 2015 Update", https://nrcoe.inl.gov/publicdocs/AvgPerf/ComponentUR2015.pdf, February 2017.
- U.S. Nuclear Regulatory Commission, "Component Unavailability Data Sheets, 2015 Update", https://nrcoe.inl.gov/publicdocs/AvgPerf/TrainUA2015.pdf, January 2017.
- [9] U.S. Nuclear Regulatory Commission, "Initiating Event Data Sheets, 2015 Update", https://nrcoe.inl.gov/publicdocs/AvgPerf/InitiatingEvents2015.pdf, July 2017.
- [10] U.S. Nuclear Regulatory Commission, Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants, NUREG-1150, December 1990.
- [11] D.M. Erickson et al., Analysis of Core Damage Frequency: Internal Events Methodology, U.S. Nuclear Regulatory Commission, NUREG/CR-4550 (SAND86-2084), Vol. 1, Rev. 1, January 1990.
- [12] M.S. DeHaan et al., "Generic Test and Maintenance Unavailabilities Based on Data from the IPEs," September 1999, attached to letter from M.B. Sattison, Idaho National Laboratory, to E.G. Rodrick, U.S. Nuclear Regulatory Commission, MBS-02-99, September 20, 1999.
- [13] C.L. Atwood et al., Handbook of Parameter Estimation for Probabilistic Risk Assessment, U.S. Nuclear Regulatory Commission, NUREG/CR-6823 (SAND2003-3348P), September 2003.
- [14] D.M. Rasmuson, T.E. Wierman, and K.J. Kvarfordt, "An Overview of the Reliability and Availability Data System (RADS)," International Topical Meeting on Probabilistic Safety Analysis PSA'05, American Nuclear Society, Inc., 2005.
- [15] T.E. Wierman et al., Industry Performance of Relief Valves at U.S. Commercial Nuclear Power Plants through 2007, U.S. Nuclear Regulatory Commission, NUREG/CR-7037 (INL/EXT-10-17932), March 2011.
- [16] K. Kiper and C. Trull, Component Reliability Data Issues for Discussion with NRC Research, PWROG-18029-NP, Revision 1, Pressurized Water Reactor Owners Group, August 2020 (ADAMS Accession No. ML20279A597).

- [17] U.S. Nuclear Regulatory Commission, "Transmittal of NRC Responses to PWROG Data Issues," U.S. Nuclear Regulatory Commission, August 2021 (ADAMS Accession No. ML21242A030, and ML21242A031 for the enclosure).
- [18] S.A. Eide et al., Reliability Study: Westinghouse Reactor Protection System, 1984 1995, U.S. Nuclear Regulatory Commission, NUREG/CR-5500 (INEEL/EXT-97-00740), Vol. 2, April 1999.
- [19] S.A. Eide et al., Reliability Study: General Electric Reactor Protection System, 1984 1995, U.S. Nuclear Regulatory Commission, NUREG/CR-5500 (INEEL/EXT-97-00740), Vol. 3, May 1999.
- [20] T.E. Wierman et al., Reliability Study: Combustion Engineering Reactor Protection System, 1984 – 1998, U.S. Nuclear Regulatory Commission, NUREG/CR-5500 (INEEL/EXT-97-00740), Vol. 10, July 2002.
- [21] T.E. Wierman et al., Reliability Study: Babcock & Wilcox Reactor Protection System, 1984 1998, U.S. Nuclear Regulatory Commission, NUREG/CR-5500 (INEEL/EXT-97-00740), Vol. 11, July 2002.
- [22] C.H. Blanton and S.A. Eide, Savannah River Site Generic Data Base Development (U), Westinghouse Savannah River Company, WSRC-TR-93-262, June 1993.
- [23] U.S. Nuclear Regulatory Commission, "Mitigating Systems Performance Index (MSPI)," http://nrc.gov/NRR/OVERSIGHT/ASSESS/mspi.html.
- [24] N. Johnson and Z. Ma, Initiating Event Rates at U.S. Nuclear Power Plants 2020 Update, Idaho National Laboratory, INL/EXT-21-63577, September 2021.
- [25] J.P. Poloski et al., Rates of Initiating Events at U.S. Nuclear Power Plants: 1987 1995, U.S. Nuclear Regulatory Commission, NUREG/CR-5750 (INEEL/EXT-98-00401), February 1999.
- [26] S.A. Eide et al., Reevaluation of Station Blackout Risk at Nuclear Power Plants, U.S. Nuclear Regulatory Commission, NUREG/CR-6890 (INEEL/EXT-05-00501), December 2005.
- [27] R. Tregoning, L. Abramson, and P. Scott, Estimating Loss-of-Coolant Accident (LOCA) Frequencies through the Elicitation Process, U.S. NRC, NUREG-1829, April 2008.
- [28] N. Johnson and Z. Ma, Analysis of Loss-of-Offsite-Power Events 2020 Update, Idaho National Laboratory, INL/EXT-21-64151, September 2021.
- [29] S.A. Eide et al., "Estimating Loss-of-Coolant Accident Frequencies for the Standardized Plant Analysis Risk Models," ANS PSA Topical Meeting on Challenges During the Nuclear Renaissance, American Nuclear Society, Inc., September 2008.
- [30] ACRS, The Integrity of Reactor Vessels for Light-Water Power Reactors, U.S. Atomic Energy Commission Advisory Committee on Reactor Safeguards, WASH-1285, 1974.

# **Appendix A**

# Component Unreliability Data Sheets 2020 Update A-1. VALVES

The valve component boundary includes the valve, the valve operator, local circuit breaker, and local instrumentation and control circuitry. The failure modes for valves are listed in Table 8.

The selected external leakage, large (ELL) mean is the external leak, small (ELS) mean multiplied by 0.07, with an assumed  $\alpha$  of 0.3. The selected internal leak, large (ILL) mean is the internal leak, small (ILS) mean multiplied by 0.02, with an assumed  $\alpha$  of 0.3. The 0.07 and 0.02 multipliers are based on limited EPIX data for large leaks, as explained in Section A.1 in NUREG/CR-6928 [A-1].

|               | Failure |           |       |                                     |
|---------------|---------|-----------|-------|-------------------------------------|
| Pooling Group | Mode    | Parameter | Units | Description                         |
| Standby       | FTOC    | р         | -     | Failure to open or failure to close |
|               | SOP     | λ         | 1/h   | Spurious operation                  |
|               | ELS     | λ         | 1/h   | External leak small                 |
|               | ELL     | λ         | 1/h   | External leak large                 |
|               | ILS     | λ         | 1/h   | Internal leak small                 |
|               | ILL     | λ         | 1/h   | Internal leak large                 |
| Control       | FC      | λ         | 1/h   | Fail to control                     |

#### Table 8. Valve failure modes.

# A-1.1 Air-Operated Valve (AOV)

#### A-1.1.1 Component Description

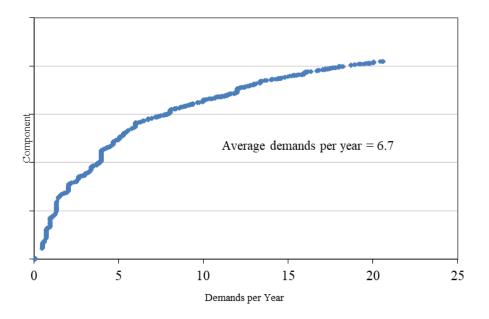
The air-operated valve (AOV) component boundary includes the valve, the valve operator (including the associated solenoid operated valve), local circuit breaker, and local instrumentation and control circuitry.

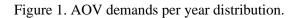
#### A-1.1.2 Data Collection and Review

The data for AOV UR baselines were obtained from the IRIS database (formerly the ICES and EPIX [A-2]), covering 2006–2020 using RADS [A-3]. The systems included in the AOV data collection are listed in Table 9, with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component-demand information use all components, regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                                   | Num     | ber of Compone | nts   |
|---------|-----------------------------------|---------|----------------|-------|
|         |                                   | High/   | _              |       |
| Pooling |                                   | Unknown | Low            |       |
| Group   | System                            | Demand  | Demand         | Total |
| All     | Auxiliary feedwater (AFW)         | 272     | 213            | 485   |
|         | Chemical and volume control (CVC) | 1384    | 352            | 1736  |
|         | Circulating water system (CWS)    | 10      | 2              | 12    |

#### Table 9. AOV systems.


|         |                                                | Number of Components |        |       |  |
|---------|------------------------------------------------|----------------------|--------|-------|--|
|         |                                                | High/                | -      |       |  |
| Pooling |                                                | Unknown              | Low    |       |  |
| Group   | System                                         | Demand               | Demand | Total |  |
|         | Component cooling water (CCW)                  | 855                  | 305    | 116   |  |
|         | Condensate system (CDS)                        | 86                   | 19     | 10    |  |
|         | Condensate transfer system (CTS)               | 1                    |        |       |  |
|         | Containment fan cooling (CFC)                  | 176                  | 26     | 20    |  |
|         | Containment isolation system (CIS)             | 7                    | 9      | 1     |  |
|         | Containment spray recirculation (CSR)          | 36                   | 32     | 6     |  |
|         | Control rod drive (CRD)                        | 468                  | 86     | 55    |  |
|         | Emergency power supply (EPS)                   | 329                  | 25     | 35    |  |
|         | Engineered safety features actuation (ESF)     | 1                    |        |       |  |
|         | Firewater system (FWS)                         | 4                    | 1      |       |  |
|         | Fuel handling system (FHS)                     | 2                    |        |       |  |
|         | Heating ventilation and air conditioning (HVC) | 739                  | 108    | 84    |  |
|         | High pressure coolant injection (HPCI or HCI)  | 80                   | 8      |       |  |
|         | High pressure core spray (HPCS or HCS)         | 33                   |        | -     |  |
|         | High pressure injection (HPI)                  | 235                  | 75     | 3     |  |
|         | Instrument air system (IAS)                    | 26                   | 21     | 4     |  |
|         | Isolation condenser (ISO)                      | 12                   | 6      |       |  |
|         | Low pressure core spray (LCS)                  | 45                   | 12     | -     |  |
|         | Main feedwater (MFW)                           | 830                  | 174    | 100   |  |
|         | Main steam system (MSS)                        | 979                  | 106    | 108   |  |
|         | Normally operating service water (SWN)         | 709                  | 330    | 103   |  |
|         | Reactor coolant system (RCS)                   | 238                  | 56     | 29    |  |
|         | Reactor core isolation (RCIC or RCI)           | 82                   | 7      |       |  |
|         | Reactor protection system (RPS)                | 8                    | 15     |       |  |
|         | Residual Heat Removal (LCI in BWRs, LPI in     | 538                  | 163    | 70    |  |
|         | PWRs) (RHR)                                    |                      |        |       |  |
|         | Standby liquid control (SLC)                   | 4                    | 1      |       |  |
|         | Standby service water (SSW)                    | 159                  | 22     | 18    |  |
|         | Vapor suppression (VSS)                        | 12                   | 33     | 4     |  |
|         | Grand Total                                    | 8360                 | 2207   | 1056  |  |


Table 10 summarizes the data used in the AOV analysis. Note that the hours for FC, spurious operations (SOP), ELS, and ILS are reactor-year hours.

|         |         | Data   |                 | Count      | S      | Percent with Failures |        |
|---------|---------|--------|-----------------|------------|--------|-----------------------|--------|
| Pooling | Failure |        | Demands or      |            |        |                       |        |
| Group   | Mode    | Events | Hours           | Components | Plants | Components            | Plants |
|         | FTO     | 50     | 165,942 d       | 1,755      | 98     | 2.3%                  | 23.5%  |
|         | FTC     | 27     | 165,942 d       | 1,755      | 98     | 1.5%                  | 20.4%  |
|         | FTOC    | 83     | 165,942 d       | 1,755      | 98     | 4.0%                  | 41.8%  |
|         | FC      | 167    | 1,109,287,000 h | 8,788      | 105    | 1.7%                  | 67.6%  |
|         | SOP     | 61     | 1,109,287,000 h | 8,788      | 105    | 0.6%                  | 35.2%  |
|         | ILS     | 35     | 1,109,287,000 h | 8,788      | 105    | 0.4%                  | 15.2%  |
|         | ILL     |        |                 | 8,788      | 105    |                       |        |
|         | ELS     | 35     | 1,109,287,000 h | 8,788      | 105    | 0.4%                  | 23.8%  |
|         | ELL     |        |                 | 8,788      | 105    |                       |        |
| CCW     | SOP     | 10     | 144,615,200 h   | 1,164      | 100    | 0.6%                  | 6.0%   |
| IAS     | SOP     | 0      | 6,218,450       | 50         | 27     | 0.0%                  | 0.0%   |

Table 10. AOV unreliability data.

Figure 1 shows the range of valve demands per year in the AOV data set (limited to low-demand components only).





#### A-1.1.3 Industry-Average Baselines

Table 11 lists the selected industry distributions of p and  $\lambda$  for the AOV failure modes. These industry-average failure rates do not account for any recovery.

Table 11. Selected industry distributions of p and  $\lambda$  for AOVs.

|                  |                 | Analysis         |          |          |          |          | ]     | Distributio | n        |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-------------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α           | β        |
|                  | FTO             | JNID/IL          | 2.37E-04 | 3.02E-04 | 3.04E-04 | 3.78E-04 | Beta  | 50.50       | 1.66E+05 |
|                  | FTC             | EB/PL/KS         | 2.30E-06 | 1.04E-04 | 1.89E-04 | 6.64E-04 | Beta  | 0.64        | 3.38E+03 |
|                  | FTOC            | EB/PL/KS         | 1.73E-05 | 3.57E-04 | 5.58E-04 | 1.78E-03 | Beta  | 0.83        | 1.49E+03 |
|                  | FC              | EB/PL/KS         | 1.50E-08 | 1.32E-07 | 1.75E-07 | 4.86E-07 | Gamma | 1.26        | 7.17E+06 |
|                  | SOP             | EB/PL/KS         | 1.99E-09 | 3.79E-08 | 5.83E-08 | 1.85E-07 | Gamma | 0.86        | 1.47E+07 |
|                  | ILS             | JNID/IL          | 2.37E-08 | 3.17E-08 | 3.20E-08 | 4.13E-08 | Gamma | 35.50       | 1.11E+09 |
|                  | ILL             |                  | 6.85E-14 | 1.56E-10 | 6.40E-10 | 2.93E-09 | Gamma | 0.30        | 4.69E+08 |
|                  | ELS             | EB/PL/KS         | 2.67E-10 | 1.75E-08 | 3.43E-08 | 1.25E-07 | Gamma | 0.58        | 1.68E+07 |
|                  | ELL             |                  | 2.57E-13 | 5.85E-10 | 2.40E-09 | 1.10E-08 | Gamma | 0.30        | 1.25E+08 |
| CCW              | SOP             | JNID/IL          | 4.00E-08 | 7.01E-08 | 7.26E-08 | 1.13E-07 | Gamma | 10.50       | 1.45E+08 |
| IAS              | SOP             | JNID/IL          | 3.16E-10 | 3.66E-08 | 8.04E-08 | 3.09E-07 | Gamma | 0.50        | 6.22E+06 |

# A-1.2 Motor-Operated Valve (MOV)

#### A-1.2.1 Component Description

The motor-operated valve (MOV) component boundary includes the valve, the valve operator, local circuit breaker, and local instrumentation and control circuitry. The failure modes for MOV are listed in Table 8.

## A-1.2.2 Data Collection and Review

The data for MOV UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the MOV data collection are listed in Table 12 with the number of components included for each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

Table 12. MOV systems.

|         |                                                | Num     | ber of Compone | nts   |
|---------|------------------------------------------------|---------|----------------|-------|
|         |                                                | High/   |                |       |
| Pooling |                                                | Unknown | Low            |       |
| Group   | System                                         | Demand  | Demand         | Total |
| All     | Auxiliary feedwater (AFW)                      | 212     | 483            | 695   |
|         | Chemical and volume control (CVC)              | 326     | 538            | 864   |
|         | Circulating water system (CWS)                 | 70      | 73             | 143   |
|         | Component cooling water (CCW)                  | 737     | 696            | 1433  |
|         | Condensate system (CDS)                        | 43      | 1              | 44    |
|         | Condensate transfer system (CTS)               |         | 6              | 6     |
|         | Containment fan cooling (CFC)                  | 34      | 7              | 41    |
|         | Containment isolation system (CIS)             | 15      | 19             | 34    |
|         | Containment spray recirculation (CSR)          | 204     | 328            | 532   |
|         | Control rod drive (CRD)                        | 69      | 15             | 84    |
|         | Emergency power supply (EPS)                   | 62      | 1              | 63    |
|         | Firewater (FWS)                                | 10      | 8              | 18    |
|         | Heating ventilation and air conditioning (HVC) | 187     | 24             | 211   |
|         | High pressure coolant injection (HCI)          | 99      | 249            | 348   |
|         | High pressure core spray (HCS)                 | 44      | 29             | 73    |
|         | High pressure injection (HPI)                  | 247     | 980            | 1227  |
|         | Instrument air (IAS)                           | 16      | 14             | 30    |
|         | Isolation condenser (ISO)                      | 5       | 19             | 24    |
|         | Low pressure core spray (LCS)                  | 96      | 209            | 305   |
|         | Main feedwater (MFW)                           | 871     | 293            | 1164  |
|         | Main steam (MSS)                               | 707     | 169            | 876   |
|         | Normally operating service water (SWN)         | 898     | 739            | 1637  |
|         | Reactor coolant (RCS)                          | 212     | 162            | 374   |
|         | Reactor core isolation (RCI)                   | 134     | 309            | 443   |
|         | Reactor protection (RPS)                       | 10      | 4              | 14    |
|         | Residual Heat Removal (LCI in BWRs, LPI in     | 917     | 1835           | 2752  |
|         | PWRs) (RHR)                                    |         |                |       |
|         | Standby liquid control (SLC)                   | 5       | 23             | 28    |
|         | Standby service water (SSW)                    | 275     | 198            | 473   |
|         | Vapor suppression (VSS)                        | 9       | 14             | 23    |

|         |        | Num     | ber of Compone | nts   |
|---------|--------|---------|----------------|-------|
|         |        | High/   |                |       |
| Pooling |        | Unknown | Low            |       |
| Group   | System | Demand  | Demand         | Total |
| Grand   | Fotal  | 6514    | 7445           | 13959 |

Table 13 summarizes the data used in the MOV analysis. Note that the hours for fail to control (FC), SOP, ELS, and ILS are reactor-year hours.

|         |         |        | Data            | Counts     | 5      | Percent with | Failures |
|---------|---------|--------|-----------------|------------|--------|--------------|----------|
| Pooling | Failure |        | Demands or      |            |        |              |          |
| Group   | Mode    | Events | Hours           | Components | Plants | Components   | Plants   |
|         | FTO     | 190    | 593,626 d       | 7,120      | 105    | 2.5%         | 78.1%    |
|         | FTC     | 123    | 593,626 d       | 7,120      | 105    | 1.6%         | 56.2%    |
|         | FTOC    | 346    | 593,626 d       | 7,120      | 105    | 4.3%         | 90.5%    |
|         | FC      | 59     | 1,634,537,000 h | 13,344     | 105    | 0.4%         | 31.4%    |
|         | SOP     | 41     | 1,634,537,000 h | 13,344     | 105    | 0.3%         | 21.9%    |
|         | ILS     | 55     | 1,634,537,000 h | 13,344     | 105    | 0.4%         | 30.5%    |
|         | ILL     |        |                 | 13,344     | 105    | 0.4%         | 30.5%    |
|         | ELS     | 29     | 1,634,537,000 h | 13,344     | 105    | 0.2%         | 20.0%    |
|         | ELL     |        |                 | 13,344     | 105    | 0.2%         | 20.0%    |
| BFV     | FTO     | 24     | 89,399 d        | 983        | 85     | 2.0%         | 18.8%    |
| BFV     | FTC     | 24     | 89,399 d        | 983        | 85     | 2.2%         | 22.4%    |
| BFV     | FTOC    | 54     | 89,399 d        | 983        | 85     | 4.6%         | 35.3%    |
| CCW     | SOP     | 4      | 183,661,900 h   | 1,472      | 98     | 0.1%         | 1.0%     |
| SWS     | SOP     | 0      | 64,725,970 h    | 566        | 47     | 0.0%         | 0.0%     |
| BFVCCW  | SOP     | 2      | 86,552,190 h    | 738        | 75     | 0.1%         | 1.3%     |

Table 13. MOV unreliability data.

Figure 2 shows the range of valve demands per year in the MOV data set (limited to low-demand components only).

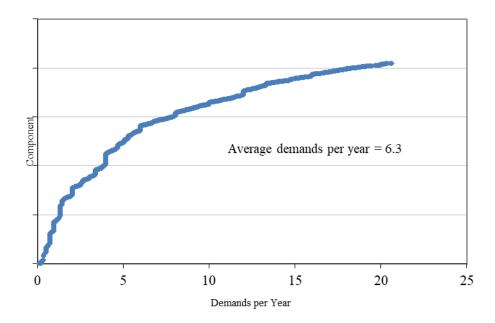



Figure 2. MOV demands per year distribution.

## A-1.2.3 Industry-Average Baselines

Table 14 lists the selected industry distributions of p and  $\lambda$  for the MOV failure modes. These industry-average failure rates do not account for any recovery.

|         |         | Analysis |          |          |          |          | Ι     | Distributi | on       |
|---------|---------|----------|----------|----------|----------|----------|-------|------------|----------|
| Pooling | Failure | Type /   |          |          |          |          |       |            |          |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α          | β        |
|         | FTO     | EB/PL/KS | 7.80E-05 | 2.99E-04 | 3.43E-04 | 7.62E-04 | Beta  | 2.48       | 7.22E+03 |
|         | FTC     | EB/PL/KS | 1.09E-05 | 1.56E-04 | 2.28E-04 | 6.90E-04 | Beta  | 0.97       | 4.26E+03 |
|         | FTOC    | EB/PL/KS | 1.42E-04 | 5.54E-04 | 6.40E-04 | 1.43E-03 | Beta  | 2.43       | 3.80E+03 |
|         | FC      | EB/PL/KS | 9.42E-10 | 2.17E-08 | 3.47E-08 | 1.13E-07 | Gamma | 0.80       | 2.30E+07 |
|         | SOP     | JNID/IL  | 1.93E-08 | 2.53E-08 | 2.54E-08 | 3.23E-08 | Gamma | 41.50      | 1.63E+09 |
|         | ILS     | EB/PL/KS | 7.97E-11 | 1.49E-08 | 3.61E-08 | 1.44E-07 | Gamma | 0.45       | 1.25E+07 |
|         | ILL     |          | 7.73E-14 | 1.76E-10 | 7.22E-10 | 3.30E-09 | Gamma | 0.30       | 4.16E+08 |
|         | ELS     | EB/PL/KS | 4.85E-11 | 7.97E-09 | 1.88E-08 | 7.43E-08 | Gamma | 0.46       | 2.46E+07 |
|         | ELL     |          | 1.41E-13 | 3.21E-10 | 1.32E-09 | 6.02E-09 | Gamma | 0.30       | 2.28E+08 |
| BFV     | FTO     | JNID/IL  | 1.90E-04 | 2.70E-04 | 2.74E-04 | 3.71E-04 | Beta  | 24.50      | 8.94E+04 |
| BFV     | FTC     | EB/PL/KS | 2.52E-05 | 2.18E-04 | 2.89E-04 | 7.97E-04 | Beta  | 1.27       | 4.39E+03 |
| BFV     | FTOC    | EB/PL/KS | 7.34E-06 | 4.06E-04 | 7.69E-04 | 2.76E-03 | Beta  | 0.60       | 7.83E+02 |
| CCW     | SOP     | JNID/IL  | 9.04E-09 | 2.27E-08 | 2.45E-08 | 4.60E-08 | Gamma | 4.50       | 1.84E+08 |
| SWS     | SOP     | JNID/IL  | 3.04E-11 | 3.52E-09 | 7.72E-09 | 2.97E-08 | Gamma | 0.50       | 6.47E+07 |
| BFVCCW  | SOP     | JNID/IL  | 6.61E-09 | 2.51E-08 | 2.89E-08 | 6.39E-08 | Gamma | 2.50       | 8.66E+07 |

Table 14. Selected industry distributions of p and  $\lambda$  for MOVs.

# A-1.3 Hydraulic-Operated Valve (HOV)

## A-1.3.1 Component Description

The hydraulic-operated valve (HOV) component boundary includes the valve, the valve operator, and local instrumentation and control circuitry. The failure modes for HOV are listed in Table 8.

#### A-1.3.2 Data Collection and Review

The data for HOV UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the HOV data collection are listed in Table 15 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|                  |                                                | Num                        | ber of Compone | nts             |
|------------------|------------------------------------------------|----------------------------|----------------|-----------------|
| Pooling<br>Group | System                                         | High/<br>Unknown<br>Demand | Low<br>Demand  | Total           |
| All              | Auxiliary feedwater (AFW)                      | 33                         | 24             | <b>10tal</b> 57 |
| AII              | Chemical and volume control (CVC)              | 55                         | 24             | 57              |
|                  | Circulating water system (CWS)                 | 5                          | 3              | 8               |
|                  | Component cooling water (CCW)                  |                            | 5              |                 |
|                  |                                                | 4                          |                | 43              |
|                  | Condensate system (CDS)                        | 3                          |                | 3               |
|                  | Containment isolation system (CIS)             | 3                          | 170            | -               |
|                  | Control rod drive (CRD)                        | 10                         | 178            | 178             |
|                  | Emergency power supply (EPS)                   | 12                         |                | 12              |
|                  | Heating ventilation and air conditioning (HVC) | 9                          | 1              | 10              |
|                  | High pressure coolant injection (HCI)          | 20                         | 7              | 27              |
|                  | High pressure injection (HPI)                  |                            | 6              | 6               |
|                  | Instrument air (IAS)                           | 1                          |                | 1               |
|                  | Main feedwater (MFW)                           | 39                         | 78             | 117             |
|                  | Main steam (MSS)                               | 198                        | 100            | 298             |
|                  | Normally operating service water (SWN)         | 6                          | 5              | 11              |
|                  | Reactor coolant (RCS)                          |                            | 3              | 3               |
|                  | Reactor core isolation (RCI)                   | 9                          | 7              | 16              |
|                  | Residual Heat Removal (LCI in BWRs, LPI in     | 10                         | 9              | 19              |
|                  | PWRs) (RHR)                                    |                            |                |                 |
|                  | Standby service water (SSW)                    | 5                          | 4              | 9               |
|                  | Vapor suppression (VSS)                        |                            | 1              | 1               |
|                  | Grand Total                                    | 357                        | 428            | 785             |

#### Table 15. HOV systems.

Table 16 summarizes the data used in the HOV analysis. Note that the hours for FC, SOP, ELS, and ILS are reactor-year hours.

| Table 16. | HOV | unreliability | data. |
|-----------|-----|---------------|-------|
|-----------|-----|---------------|-------|

|         |         | Data   |            | Counts     | 5      | Percent with | Failures |
|---------|---------|--------|------------|------------|--------|--------------|----------|
| Pooling | Failure |        | Demands or |            |        |              |          |
| Group   | Mode    | Events | Hours      | Components | Plants | Components   | Plants   |
|         | FTOC    | 17     | 16,401 d   | 219        | 42     | 7.3%         | 23.8%    |

| Pooling | Failure |        | Data<br>Demands or |            | 1      | Percent with Failures |        |
|---------|---------|--------|--------------------|------------|--------|-----------------------|--------|
| Group   | Mode    | Events | Hours              | Components | Plants | Components            | Plants |
|         | FC      | 21     | 76,176,020 h       | 603        | 80     | 3.3%                  | 20.0%  |
|         | SOP     | 10     | 76,176,020 h       | 603        | 80     | 1.2%                  | 8.8%   |
|         | ILS     | 2      | 76,176,020 h       | 603        | 80     | 0.3%                  | 2.5%   |
|         | ILL     |        |                    | 603        | 80     | 0.3%                  | 2.5%   |
|         | ELS     | 7      | 76,176,020 h       | 603        | 80     | 1.0%                  | 7.5%   |
|         | ELL     |        |                    | 603        | 80     | 1.0%                  | 7.5%   |

Figure 3 shows the range of valve demands per year in the HOV data set (limited to low-demand components only).

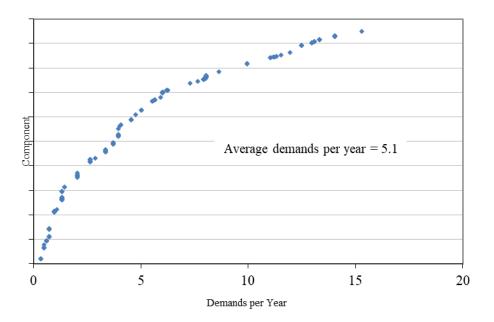



Figure 3. HOV demands per year distribution.

#### A-1.3.3 Industry-Average Baselines

Table 17 lists the selected industry distributions of p and  $\lambda$  for the HOV failure modes. These industry-average failure rates do not account for any recovery.

Table 17. Selected industry distributions of p and  $\lambda$  for HOVs.

| Analysis         |                 |                  |          |          |          | I        | Distributi | on    |          |
|------------------|-----------------|------------------|----------|----------|----------|----------|------------|-------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре       | α     | β        |
|                  | FTOC            | EB/PL/KS         | 2.23E-06 | 4.93E-04 | 1.23E-03 | 4.97E-03 | Beta       | 0.44  | 3.53E+02 |
|                  | FC              | JNID/IL          | 1.90E-07 | 2.78E-07 | 2.82E-07 | 3.89E-07 | Gamma      | 21.50 | 7.62E+07 |
|                  | SOP             | EB/PL/KS         | 6.27E-10 | 5.84E-08 | 1.23E-07 | 4.64E-07 | Gamma      | 0.53  | 4.28E+06 |
|                  | ILS             | JNID/IL          | 7.52E-09 | 2.86E-08 | 3.28E-08 | 7.26E-08 | Gamma      | 2.50  | 7.62E+07 |
|                  | ILL             |                  | 7.02E-14 | 1.60E-10 | 6.56E-10 | 3.00E-09 | Gamma      | 0.30  | 4.57E+08 |
|                  | ELS             | EB/PL/KS         | 2.08E-10 | 3.97E-08 | 9.66E-08 | 3.85E-07 | Gamma      | 0.45  | 4.65E+06 |
|                  | ELL             |                  | 7.24E-13 | 1.65E-09 | 6.76E-09 | 3.09E-08 | Gamma      | 0.30  | 4.44E+07 |

# A-1.4 Solenoid-Operated Valve (SOV)

## A-1.4.1 Component Description

The solenoid-operated valve (SOV) component boundary includes the valve, the valve operator, and local instrumentation and control circuitry. The failure modes for SOV are listed in Table 8.

#### A-1.4.2 Data Collection and Review

The data for SOV UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the SOV data collection are listed in Table 18 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                                                | Num     | ber of Compone | nts   |
|---------|------------------------------------------------|---------|----------------|-------|
|         |                                                | High/   | _              |       |
| Pooling |                                                | Unknown | Low            |       |
| Group   | System                                         | Demand  | Demand         | Total |
| All     | Auxiliary feedwater (AFW)                      | 24      | 32             | 56    |
|         | Chemical and volume control (CVC)              | 33      | 23             | 56    |
|         | Component cooling water (CCW)                  | 10      |                | 10    |
|         | Condensate system (CDS)                        | 3       |                | 3     |
|         | Containment fan cooling (CFC)                  | 6       |                | 6     |
|         | Containment spray recirculation (CSR)          | 18      | 3              | 21    |
|         | Control rod drive (CRD)                        | 22      | 401            | 423   |
|         | Emergency power supply (EPS)                   | 55      | 21             | 76    |
|         | Engineered safety features actuation (ESF)     | 5       |                | 5     |
|         | Firewater (FWS)                                | 48      | 1              | 49    |
|         | Fuel handling (FHS)                            | 2       |                | 2     |
|         | Heating ventilation and air conditioning (HVC) | 20      | 47             | 67    |
|         | High pressure coolant injection (HCI)          | 11      | 8              | 19    |
|         | High pressure injection (HPI)                  | 31      | 6              | 37    |
|         | Instrument air (IAS)                           | 40      | 39             | 79    |
|         | Low pressure core spray (LCS)                  |         | 2              | 2     |
|         | Main feedwater (MFW)                           | 15      | 6              | 21    |
|         | Main steam (MSS)                               | 28      | 39             | 67    |
|         | Normally operating service water (SWN)         | 13      | 14             | 27    |
|         | Reactor coolant (RCS)                          | 13      | 80             | 93    |
|         | Reactor core isolation (RCI)                   | 1       | 2              | 3     |
|         | Reactor protection (RPS)                       | 8       | 14             | 22    |
|         | Residual Heat Removal (LCI in BWRs, LPI in     | 20      | 35             | 55    |
|         | PWRs) (RHR)                                    |         |                |       |
|         | Standby service water (SSW)                    | 3       |                | 3     |
|         | Vapor suppression (VSS)                        |         | 2              | 2     |
|         | Grand Total                                    | 429     | 775            | 1204  |

Table 18. SOV systems.

Table 19 summarizes the data used in the SOV analysis.

|         |         |        | Data          | Counts     | Counts |            | Percent with Failures |  |
|---------|---------|--------|---------------|------------|--------|------------|-----------------------|--|
| Pooling | Failure |        | Demands or    |            |        |            |                       |  |
| Group   | Mode    | Events | Hours         | Components | Plants | Components | Plants                |  |
|         | FTOC    | 13     | 27,937 d      | 555        | 54     | 2.0%       | 14.8%                 |  |
|         | FC      | 15     | 115,760,700 h | 921        | 86     | 1.6%       | 12.8%                 |  |
|         | SOP     | 9      | 115,760,700 h | 921        | 86     | 0.4%       | 4.7%                  |  |
|         | ILS     | 8      | 115,760,700 h | 921        | 86     | 0.9%       | 5.8%                  |  |
|         | ILL     |        |               | 921        | 86     |            |                       |  |
|         | ELS     | 2      | 115,760,700 h | 921        | 86     | 0.2%       | 2.3%                  |  |
|         | ELL     |        |               | 921        | 86     |            |                       |  |

Table 19. SOV unreliability data.

Figure 4 shows the range of valve demands per year in the SOV data set (limited to low-demand components only).

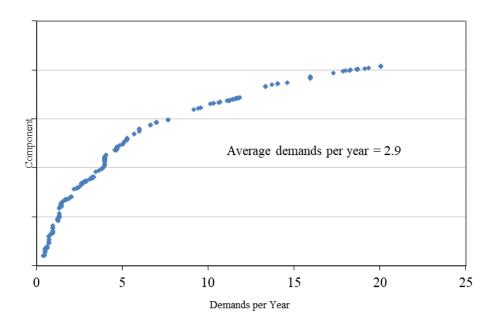



Figure 4. SOV demands per year distribution.

#### A-1.4.3 Industry-Average Baselines

Table 20 lists the selected industry distributions of p and  $\lambda$  for the SOV failure modes. These industry-average failure rates do not account for any recovery.

Table 20. Selected industry distributions of p and  $\lambda$  for SOVs.

| Derle            | <b>F</b> _ <b>!</b> | Analysis         |          |          |          |          | Ι     | Distributi | ion      |
|------------------|---------------------|------------------|----------|----------|----------|----------|-------|------------|----------|
| Pooling<br>Group | Failure<br>Mode     | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α          | β        |
|                  | FTOC                | JNID/IL          | 2.89E-04 | 4.72E-04 | 4.83E-04 | 7.18E-04 | Beta  | 13.50      | 2.79E+04 |
|                  | FC                  | EB/PL/KS         | 1.52E-09 | 8.08E-08 | 1.52E-07 | 5.44E-07 | Gamma | 0.61       | 4.01E+06 |
|                  | SOP                 | JNID/IL          | 4.36E-08 | 7.90E-08 | 8.21E-08 | 1.30E-07 | Gamma | 9.50       | 1.16E+08 |
|                  | ILS                 | JNID/IL          | 3.74E-08 | 7.04E-08 | 7.34E-08 | 1.19E-07 | Gamma | 8.50       | 1.16E+08 |
|                  | ILL                 |                  | 1.57E-13 | 3.58E-10 | 1.47E-09 | 6.72E-09 | Gamma | 0.30       | 2.04E+08 |
|                  | ELS                 | JNID/IL          | 4.94E-09 | 1.88E-08 | 2.16E-08 | 4.77E-08 | Gamma | 2.50       | 1.16E+08 |
|                  | ELL                 |                  | 1.62E-13 | 3.69E-10 | 1.51E-09 | 6.92E-09 | Gamma | 0.30       | 1.98E+08 |

# A-1.5 Explosive-Operated Valve (EOV)

#### A-1.5.1 Component Description

The explosive-operated valve (EOV) component boundary includes the valve and local instrumentation and control circuitry. The failure modes for EOV are listed in Table 8.

## A-1.5.2 Data Collection and Review

Data for EOV UR baseline was obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the EOV data collection are listed in Table 21 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

| DV systems.                  |                                        |                                                                                            |                                                                                                                                                             |  |
|------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                              | Number of Components                   |                                                                                            |                                                                                                                                                             |  |
|                              | High/                                  |                                                                                            |                                                                                                                                                             |  |
|                              | Unknown                                | Low                                                                                        |                                                                                                                                                             |  |
| System                       | Demand                                 | Demand                                                                                     | Total                                                                                                                                                       |  |
| Standby liquid control (SLC) | 13                                     | 60                                                                                         | 73                                                                                                                                                          |  |
| Grand Total                  | 13                                     | 60                                                                                         | 73                                                                                                                                                          |  |
|                              | System<br>Standby liquid control (SLC) | Num       High/       Unknown       System       Demand       Standby liquid control (SLC) | Number of Component         High/         Unknown       Low         System       Demand       Demand         Standby liquid control (SLC)       13       60 |  |

Table 22 summarizes the data used in the EOV analysis.

|         |                 | Data   |            | Counts     |        | Percent with Failures |        |
|---------|-----------------|--------|------------|------------|--------|-----------------------|--------|
| Pooling | Pooling Failure |        | Demands or |            |        |                       |        |
| Group   | Mode            | Events | Hours      | Components | Plants | Components            | Plants |
|         | FTO             | 3      | 674 d      | 59         | 28     | 5.1%                  | 10.7%  |

Figure 5 shows the range of valve demands per year in the EOV data set (limited to low-demand components only).

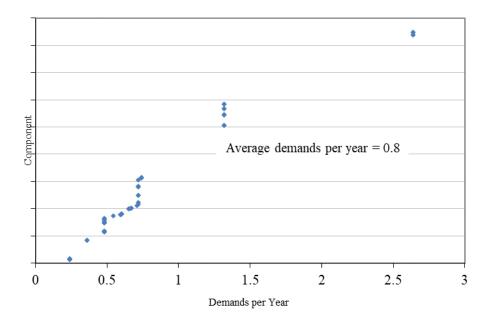



Figure 5. EOV demands per year distribution.

## A-1.5.3 Industry-Average Baselines

Table 23 lists the industry-average failure rate distribution for the EOV FTO failure mode. This industry-average failure rate does not account for any recovery.

Table 23. Selected industry distributions of p and  $\lambda$  for EOVs.

| Analysis |         |          |          |          |          |          | Distribution |      |          |
|----------|---------|----------|----------|----------|----------|----------|--------------|------|----------|
| Pooling  | Failure | Type /   | 5%       | Maltan   | Maan     | 050/     | <b>T</b>     |      | o        |
| Group    | Mode    | Source   | 5%0      | Median   | Mean     | 95%      | Туре         | α    | р        |
|          | FTO     | EB/PL/KS | 2.45E-04 | 3.23E-03 | 4.62E-03 | 1.38E-02 | Beta         | 1.01 | 2.17E+02 |

# A-1.6 Vacuum Breaker Valve (VBV)

## A-1.6.1 Component Description

The vacuum breaker valve (VBV) component boundary includes the valve, the valve operator, local circuit breaker, and local instrumentation and control circuitry. The failure modes for VBV are listed in Table 8.

## A-1.6.2 Data Collection and Review

Data for VBV UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the VBV data collection are listed in Table 24 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                         | Num     | Number of Components |       |  |  |  |
|---------|-------------------------|---------|----------------------|-------|--|--|--|
|         |                         | High/   |                      |       |  |  |  |
| Pooling |                         | Unknown | Low                  |       |  |  |  |
| Group   | System                  | Demand  | Demand               | Total |  |  |  |
| All     | Vapor suppression (VSS) | 174     | 167                  | 341   |  |  |  |
|         | Grand Total             | 174     | 167                  | 34    |  |  |  |

Table 25 summarizes the data used in the VBV analysis.

|         |         | Data   |              | Counts    |        | Percent with Failures |        |
|---------|---------|--------|--------------|-----------|--------|-----------------------|--------|
| Pooling | Failure |        | Demands or   | Component |        |                       |        |
| Group   | Mode    | Events | Hours        | s         | Plants | Components            | Plants |
|         | FTO     | 1      | 23,202 d     | 167       | 17     | 0.6%                  | 5.9%   |
|         | FTC     | 1      | 23,202 d     | 167       | 17     | 0.6%                  | 5.9%   |
|         | FTOC    | 2      | 23,202 d     | 167       | 17     | 1.2%                  | 11.8%  |
|         | SOP     | 0      | 43,685,040 h | 343       | 30     | 0.0%                  | 0.0%   |
|         | ILS     | 2      | 43,685,040 h | 343       | 30     | 0.6%                  | 6.7%   |
|         | ILL     |        |              | 343       | 30     |                       |        |

#### Table 25. VBV unreliability data.

Table 24. VBV systems.

Figure 6 shows the range of valve demands per year in the VBV data set (limited to low-demand components only).

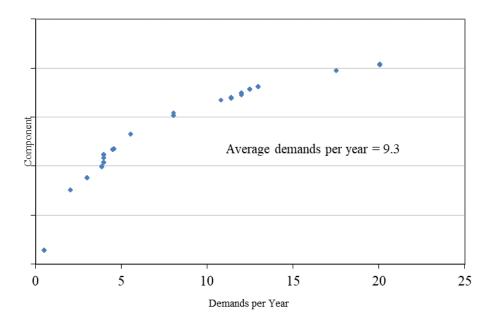



Figure 6. VBV demands per year distribution.

### A-1.6.3 Industry-Average Baselines

Table 26 lists the selected industry distributions of p and  $\lambda$  for the VBV failure modes. These industry-average failure rates do not account for any recovery.

|         |         | Analysis |          |          |          |          | I     | Distribut | ion      |
|---------|---------|----------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling | Failure | Type /   |          |          |          |          |       |           |          |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
|         | FTO     | JNID/IL  | 7.58E-06 | 5.10E-05 | 6.46E-05 | 1.68E-04 | Beta  | 1.50      | 2.32E+04 |
|         | FTC     | JNID/IL  | 7.58E-06 | 5.10E-05 | 6.46E-05 | 1.68E-04 | Beta  | 1.50      | 2.32E+04 |
|         | FTOC    | JNID/IL  | 2.47E-05 | 9.38E-05 | 1.08E-04 | 2.39E-04 | Beta  | 2.50      | 2.32E+04 |
|         | SOP     | JNID/IL  | 4.50E-11 | 5.21E-09 | 1.14E-08 | 4.40E-08 | Gamma | 0.50      | 4.37E+07 |
|         | ILS     | JNID/IL  | 1.31E-08 | 4.98E-08 | 5.72E-08 | 1.27E-07 | Gamma | 2.50      | 4.37E+07 |
|         | ILL     |          | 1.22E-13 | 2.79E-10 | 1.14E-09 | 5.23E-09 | Gamma | 0.30      | 2.62E+08 |

Table 26. Selected industry distributions of p and  $\lambda$  for VBVs.

# A-1.7 Turbine Bypass Valve (TBV)

#### A-1.7.1 Component Description

The turbine bypass valve (TBV) component boundary includes the valve, the valve operator (including the associated solenoid operated valves), local circuit breaker, and local instrumentation and control circuitry. The failure modes for TBV are listed in Table 8.

#### A-1.7.2 Data Collection and Review

The data for TBV UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the TBV data collection are listed in Table 27 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

| Table 27. | TBV | systems. |  |
|-----------|-----|----------|--|
|           |     |          |  |

|         |                  |        | Num     | Number of Components |       |  |  |  |
|---------|------------------|--------|---------|----------------------|-------|--|--|--|
|         |                  |        | High/   |                      |       |  |  |  |
| Pooling |                  |        | Unknown | Low                  |       |  |  |  |
| Group   |                  | System | Demand  | Demand               | Total |  |  |  |
| All     | Main steam (MSS) |        | 79      | 77                   | 156   |  |  |  |
|         | Grand Total      |        | 79      | 77                   | 156   |  |  |  |

Table 28 summarizes the data used in the AOV analysis. Note that the hours for FC are reactor-year hours.

|         |         | J      | Data         |            | Counts |            | Failures |
|---------|---------|--------|--------------|------------|--------|------------|----------|
| Pooling | Failure |        | Demands or   |            |        |            |          |
| Group   | Mode    | Events | Hours        | Components | Plants | Components | Plants   |
|         | FTO     | 1      | 2,367 d      | 73         | 15     | 1.4%       | 6.7%     |
|         | FTC     | 0      | 2,367 d      | 73         | 15     | 0.0%       | 0.0%     |
|         | FTOC    | 1      | 2,367 d      | 73         | 15     | 1.4%       | 6.7%     |
|         | FC      | 6      | 19,263,540 h | 153        | 27     | 3.3%       | 18.5%    |

#### Table 28. TBV unreliability data.

Figure 7 shows the range of valve demands per year in the TBV data set (limited to low-demand components only).

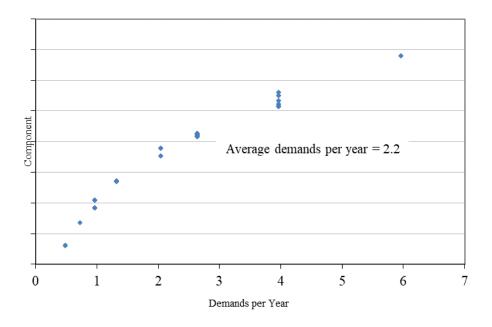



Figure 7. TBV demands per year distribution.

### A-1.7.3 Industry-Average Baselines

Table 29 lists the selected industry distributions of p and  $\lambda$  for the TBV failure modes. These industry-average failure rates do not account for any recovery.

| Pooling | Failure | Analysis<br>Type / |          |          |          |          | Γ     | Distribut | ion      |
|---------|---------|--------------------|----------|----------|----------|----------|-------|-----------|----------|
| Group   | Mode    | Source             | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
|         | FTO     | JNID/IL            | 7.42E-05 | 4.99E-04 | 6.33E-04 | 1.65E-03 | Beta  | 1.50      | 2.37E+03 |
|         | FTC     | JNID/IL            | 8.30E-07 | 9.60E-05 | 2.11E-04 | 8.10E-04 | Beta  | 0.50      | 2.37E+03 |
|         | FTOC    | JNID/IL            | 7.42E-05 | 4.99E-04 | 6.33E-04 | 1.65E-03 | Beta  | 1.50      | 2.37E+03 |
|         | FC      | EB/PL/KS           | 1.29E-09 | 1.60E-07 | 3.57E-07 | 1.38E-06 | Gamma | 0.49      | 1.38E+06 |

# A-1.8 Main Steam Isolation Valve (MSV)

#### A-1.8.1 Component Description

The motor-operated valve (MSV) component boundary includes the valve, the valve operator, local circuit breaker, and local instrumentation and control circuitry. The failure modes for MSV are listed in Table 8.

### A-1.8.2 Data Collection and Review

The data for MSV UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the MOV data collection are listed in Table 30 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

| Table | 30  | MSV    | systems. |
|-------|-----|--------|----------|
| Table | 50. | IVIS V | systems. |

|         |                  |        | Num     | ber of Compone | nts   |
|---------|------------------|--------|---------|----------------|-------|
|         |                  |        | High/   |                |       |
| Pooling |                  |        | Unknown | Low            |       |
| Group   |                  | System | Demand  | Demand         | Total |
| All     | Main steam (MSS) |        | 95      | 425            | 520   |
|         | Grand Total      |        | 95      | 425            | 520   |

Table 31 summarizes the data used in the MSV analysis. Note that the hours for SOP, ELS, and ILS are reactor-year hours.

|         |         | ]      | Data         |            | Counts |            | <b>Percent with Failures</b> |  |
|---------|---------|--------|--------------|------------|--------|------------|------------------------------|--|
| Pooling | Failure |        | Demands or   |            |        |            |                              |  |
| Group   | Mode    | Events | Hours        | Components | Plants | Components | Plants                       |  |
|         | FTOC    | 24     | 32,199 d     | 425        | 84     | 4.9%       | 19.0%                        |  |
|         | SOP     | 16     | 65,768,320 h | 520        | 105    | 2.9%       | 11.4%                        |  |
|         | ILS     | 23     | 65,768,320 h | 520        | 105    | 4.0%       | 12.4%                        |  |
|         | ILL     |        |              | 520        | 105    |            |                              |  |
|         | ELS     | 1      | 65,768,320 h | 520        | 105    | 0.2%       | 1.0%                         |  |
|         | ELL     |        |              | 520        | 105    |            |                              |  |

#### Table 31. MSV unreliability data.

Figure 8 shows the range of valve demands per year in the MSV data set (limited to low-demand components only).



Figure 8. MSV demands per year distribution.

### A-1.8.3 Industry-Average Baselines

Table 32 lists the selected industry distributions of p and  $\lambda$  for the MSV failure modes. These industry-average failure rates do not account for any recovery.

| Pooling | Failure | Analysis<br>Type / |          |          |          |          | I     | Distributi | on       |
|---------|---------|--------------------|----------|----------|----------|----------|-------|------------|----------|
| Group   | Mode    | Source             | 5%       | Median   | Mean     | 95%      | Туре  | α          | β        |
|         | FTOC    | JNID/IL            | 5.27E-04 | 7.50E-04 | 7.61E-04 | 1.03E-03 | Beta  | 24.50      | 3.22E+04 |
|         | SOP     | EB/PL/KS           | 9.30E-10 | 1.07E-07 | 2.34E-07 | 8.99E-07 | Gamma | 0.50       | 2.14E+06 |
|         | ILS     | JNID/IL            | 2.45E-07 | 3.52E-07 | 3.57E-07 | 4.86E-07 | Gamma | 23.50      | 6.58E+07 |
|         | ILL     |                    | 7.64E-13 | 1.74E-09 | 7.14E-09 | 3.27E-08 | Gamma | 0.30       | 4.20E+07 |
|         | ELS     | JNID/IL            | 2.67E-09 | 1.80E-08 | 2.28E-08 | 5.94E-08 | Gamma | 1.50       | 6.58E+07 |
|         | ELL     |                    | 1.71E-13 | 3.89E-10 | 1.60E-09 | 7.30E-09 | Gamma | 0.30       | 1.88E+08 |

Table 32. Selected industry distributions of p and  $\lambda$  for MSVs.

# A-1.9 Check Valve (CKV)

#### A-1.9.1 Component Description

The check valve (CKV) component boundary includes the valve and no other supporting components. The failure modes for CKV are listed in Table 8.

#### A-1.9.2 Data Collection and Review

Data for CKV UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the CKV data collection are listed in Table 33 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

#### Table 33. CKV systems.

|         |                                                | Num     | ber of Compone | nts   |
|---------|------------------------------------------------|---------|----------------|-------|
|         |                                                | High/   |                |       |
| Pooling |                                                | Unknown | Low            |       |
| Group   | System                                         | Demand  | Demand         | Total |
| All     | Auxiliary feedwater (AFW)                      | 938     | 32             | 970   |
|         | Chemical and volume control (CVC)              | 970     | 55             | 1025  |
|         | Circulating water system (CWS)                 | 7       |                | 7     |
|         | Component cooling water (CCW)                  | 561     | 42             | 603   |
|         | Condensate system (CDS)                        | 90      |                | 90    |
|         | Condensate transfer system (CTS)               | 3       |                | 3     |
|         | Containment fan cooling (CFC)                  | 2       | 1              | 3     |
|         | Containment isolation system (CIS)             |         | 1              | 1     |
|         | Containment spray recirculation (CSR)          | 313     | 52             | 365   |
|         | Control rod drive (CRD)                        | 356     | 3              | 359   |
|         | Emergency power supply (EPS)                   | 662     | 26             | 688   |
|         | Engineered safety features actuation (ESF)     | 2       |                | 2     |
|         | Firewater (FWS)                                | 33      |                | 33    |
|         | Fuel handling (FHS)                            | 33      |                | 33    |
|         | Heating ventilation and air conditioning (HVC) | 21      | 4              | 25    |
|         | High pressure coolant injection (HCI)          | 178     | 12             | 190   |
|         | High pressure core spray (HCS)                 | 73      |                | 73    |
|         | High pressure injection (HPI)                  | 955     | 149            | 1104  |
|         | Instrument air (IAS)                           | 235     |                | 235   |
|         | Isolation condenser (ISO)                      |         | 1              | 1     |
|         | Low pressure core spray (LCS)                  | 127     | 5              | 132   |
|         | Main feedwater (MFW)                           | 231     | 27             | 258   |
|         | Main steam (MSS)                               | 255     | 21             | 276   |
|         | Normally operating service water (SWN)         | 574     | 10             | 584   |
|         | Reactor coolant (RCS)                          | 205     | 7              | 212   |
|         | Reactor core isolation (RCI)                   | 165     | 12             | 177   |
|         | Reactor recirculation (RRS)                    |         | 1              | 1     |
|         | Residual Heat Removal (LCI in BWRs, LPI in     | 1036    | 111            | 1147  |
|         | PWRs) (RHR)                                    |         |                |       |
|         | Standby liquid control (SLC)                   | 94      | 7              | 101   |
|         | Standby service water (SSW)                    | 181     | 16             | 197   |
|         | Vapor suppression (VSS)                        | 10      | 4              | 14    |

|         |                     | Number of Components |        |       |  |  |
|---------|---------------------|----------------------|--------|-------|--|--|
|         |                     | High/                |        |       |  |  |
| Pooling |                     | Unknown              | Low    |       |  |  |
| Group   | System              | Demand               | Demand | Total |  |  |
|         | Ice condenser (ICS) | 2                    |        | 2     |  |  |
|         | Grand Total         | 8312                 | 599    | 8911  |  |  |

Table 34 summarizes the data used in the CKV analysis. Note that the hours for SOP, ELS, and ILS are reactor-year hours.

|         |         |        | Data          | Counts     | Counts |            | Percent with Failures |  |
|---------|---------|--------|---------------|------------|--------|------------|-----------------------|--|
| Pooling | Failure |        | Demands or    |            |        |            |                       |  |
| Group   | Mode    | Events | Hours         | Components | Plants | Components | Plants                |  |
| -       | FTO     | 0      | 44,791 d      | 489        | 44     | 0.0%       | 0.0%                  |  |
| -       | FTC     | 5      | 44,791 d      | 489        | 44     | 1.0%       | 9.1%                  |  |
| -       | SOP     | 0      | 806,744,700 h | 6,379      | 104    | 0.0%       | 0.0%                  |  |
| -       | ILS     | 58     | 806,744,700 h | 6,379      | 104    | 0.9%       | 28.8%                 |  |
| -       | ILL     |        |               | 6,379      | 104    |            |                       |  |
| -       | ELS     | 3      | 806,744,700 h | 6,379      | 104    | 0.0%       | 2.9%                  |  |
| -       | ELL     |        |               | 6,379      | 104    |            |                       |  |

Table 34. CKV unreliability data.

Figure 9 shows the range of valve demands per year in the CKV data set (limited to low-demand components only).

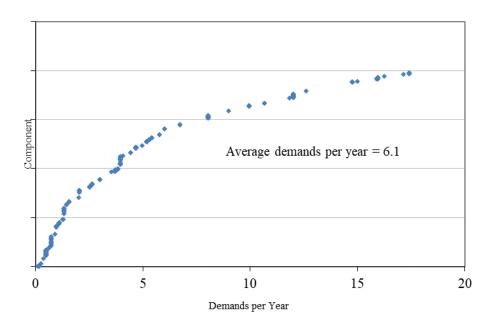



Figure 9. CKV demands per year distribution.

#### A-1.9.3 Industry-Average Baselines

Table 35 lists the selected industry distributions of p and  $\lambda$  for the CKV failure modes. These industry-average failure rates do not account for any recovery.

| Analysis         |                 |                  |          |          |          |          | I     | Distributi | on       |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|------------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α          | β        |
| -                | FTO             | JNID/IL          | 4.39E-08 | 5.08E-06 | 1.12E-05 | 4.29E-05 | Beta  | 0.50       | 4.48E+04 |
| -                | FTC             | JNID/IL          | 5.11E-05 | 1.15E-04 | 1.23E-04 | 2.20E-04 | Beta  | 5.50       | 4.48E+04 |
| -                | SOP             | JNID/IL          | 2.44E-12 | 2.82E-10 | 6.20E-10 | 2.38E-09 | Gamma | 0.50       | 8.07E+08 |
| -                | ILS             | JNID/IL          | 5.76E-08 | 7.21E-08 | 7.25E-08 | 8.88E-08 | Gamma | 58.50      | 8.07E+08 |
| -                | ILL             |                  | 1.55E-13 | 3.53E-10 | 1.45E-09 | 6.63E-09 | Gamma | 0.30       | 2.07E+08 |
| -                | ELS             | JNID/IL          | 1.34E-09 | 3.93E-09 | 4.34E-09 | 8.72E-09 | Gamma | 3.50       | 8.07E+08 |
| -                | ELL             |                  | 3.25E-14 | 7.41E-11 | 3.04E-10 | 1.39E-09 | Gamma | 0.30       | 9.87E+08 |

Table 35. Selected industry distributions of p and  $\lambda$  for CKVs.

## A-1.10 Manual Valve (XVM)

#### A-1.10.1 Component Description

The manual valve (XVM) component boundary includes the valve and valve operator. The failure modes for XVM are listed in Table 8.

#### A-1.10.2 Data Collection and Review

Data for XVM UR baselines were obtained from the IRIS database, covering 1997–2004 using RADS. The systems included in the XVM data collection are listed in Table 36 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                                                | Num     | ber of Componer | nts   |  |
|---------|------------------------------------------------|---------|-----------------|-------|--|
|         |                                                | High/   | _               |       |  |
| Pooling |                                                | Unknown | Low             |       |  |
| Group   | System                                         | Demand  | Demand          | Total |  |
| All     | Auxiliary feedwater (AFW)                      | 94      | 5               | 99    |  |
|         | Chemical and volume control (CVC)              | 62      | 10              | 72    |  |
|         | Circulating water system (CWS)                 | 4       |                 | 4     |  |
|         | Component cooling water (CCW)                  | 179     | 19              | 198   |  |
|         | Condensate system (CDS)                        | 2       |                 | 2     |  |
|         | Condensate transfer system (CTS)               | 1       |                 | 1     |  |
|         | Containment spray recirculation (CSR)          | 30      | 2               | 32    |  |
|         | Control rod drive (CRD)                        | 5       |                 | 5     |  |
|         | Emergency power supply (EPS)                   | 18      |                 | 18    |  |
|         | Firewater (FWS)                                | 5       |                 | 5     |  |
|         | Heating ventilation and air conditioning (HVC) | 6       |                 | 6     |  |
|         | High pressure coolant injection (HCI)          | 3       |                 | 3     |  |
|         | High pressure core spray (HCS)                 | 29      |                 | 29    |  |
|         | High pressure injection (HPI)                  | 26      | 1               | 27    |  |
|         | Instrument air (IAS)                           | 6       |                 | 6     |  |
|         | Isolation condenser (ISO)                      | 24      |                 | 24    |  |
|         | Low pressure core spray (LCS)                  | 12      |                 | 12    |  |
|         | Main feedwater (MFW)                           | 5       | 1               | 6     |  |
|         | Main steam (MSS)                               | 21      | 6               | 27    |  |
|         | Normally operating service water (SWN)         | 58      | 6               | 64    |  |
|         | Reactor coolant (RCS)                          | 9       |                 | 9     |  |
|         | Reactor core isolation (RCI)                   | 13      |                 | 13    |  |
|         | Reactor protection (RPS)                       | 2       |                 | 2     |  |
|         | Residual Heat Removal (LCI in BWRs, LPI in     | 124     | 14              | 138   |  |
|         | PWRs) (RHR)                                    |         |                 |       |  |
|         | Standby liquid control (SLC)                   | 8       | 4               | 12    |  |
|         | Standby service water (SSW)                    | 110     | 8               | 118   |  |
|         | Grand Total                                    | 856     | 76              | 932   |  |

#### Table 36. XVM systems.

Table 37 summarizes the data used in the XVM analysis. Note that the hours for SOP, ELS, and ILS are reactor-year hours.

|                  |                 | Data                       |               | Counts     | Counts |            | Percent with Failures |  |
|------------------|-----------------|----------------------------|---------------|------------|--------|------------|-----------------------|--|
| Pooling<br>Group | Failure<br>Mode | Demands or<br>Events Hours |               | Components | Plants | Components | Plants                |  |
|                  | FTOC            | 1                          | 2,875 d       | - 66       | 9      | 1.5%       | 11.1%                 |  |
|                  | SOP             | 2                          | 132,674,000 h | 1,035      | 83     | 0.2%       | 2.4%                  |  |
|                  | ILS             | 3                          | 132,674,000 h | 1,035      | 83     | 0.3%       | 3.6%                  |  |
|                  | ILL             |                            |               | 1,035      | 83     |            |                       |  |
|                  | ELS             | 11                         | 132,674,000 h | 1,035      | 83     | 1.1%       | 9.6%                  |  |
|                  | ELL             |                            |               | 1,035      | 83     |            |                       |  |
| SWS              | SOP             | 0                          | 18,055,700 h  | 140        | 20     | 0.0%       | 0.0%                  |  |

Table 37. XVM unreliability data.

Figure 10 shows the range of valve demands per year in the XVM data set (limited to low-demand components only).

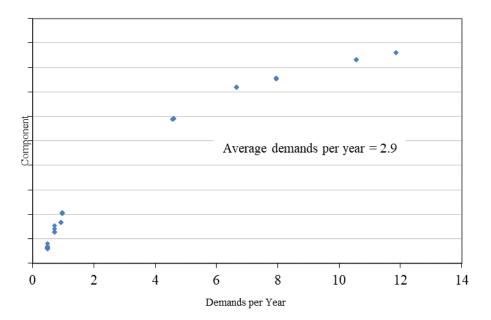



Figure 10. XVM demands per year distribution.

#### A-1.10.3 Industry-Average Baselines

Table 38 lists the selected industry distributions of p and  $\lambda$  for the XVM failure modes. These industry-average failure rates do not account for any recovery.

|                  |                 | Analysis         |          |          |          |          | I     | Distributi | on       |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|------------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α          | ß        |
|                  | FTOC            | JNID/IL          | 6.13E-05 | 4.12E-04 | 5.22E-04 | 1.36E-03 | Beta  | 1.50       | 2.87E+03 |
|                  | SOP             | JNID/IL          | 4.31E-09 | 1.64E-08 | 1.88E-08 | 4.16E-08 | Gamma | 2.50       | 1.33E+08 |
|                  | ILS             | JNID/IL          | 8.15E-09 | 2.39E-08 | 2.64E-08 | 5.29E-08 | Gamma | 3.50       | 1.33E+08 |
|                  | ILL             |                  | 5.65E-14 | 1.29E-10 | 5.28E-10 | 2.42E-09 | Gamma | 0.30       | 5.68E+08 |
|                  | ELS             | JNID/IL          | 4.92E-08 | 8.40E-08 | 8.67E-08 | 1.32E-07 | Gamma | 11.50      | 1.33E+08 |
|                  | ELL             |                  | 6.50E-13 | 1.48E-09 | 6.07E-09 | 2.78E-08 | Gamma | 0.30       | 4.94E+07 |
| SWS              | SOP             | JNID/IL          | 1.09E-10 | 1.26E-08 | 2.77E-08 | 1.06E-07 | Gamma | 0.50       | 1.81E+07 |

Table 38. Selected industry distributions of p and  $\lambda$  for XVMs.

# A-1.11 Flow Control Valve (FCV)

#### A-1.11.1 Component Description

The Flow Control Valve (FCV) component boundary includes the valve and valve operator. Motoroperated and air-operated valves are included in this group. The failure modes for FCV are listed in Table 8.

### A-1.11.2 Data Collection and Review

Data for FCV UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the FCV data collection are listed in Table 39 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                                            | Num     | ber of Compone | nts   |
|---------|--------------------------------------------|---------|----------------|-------|
|         |                                            | High/   | -              |       |
| Pooling |                                            | Unknown | Low            |       |
| Group   | System                                     | Demand  | Demand         | Total |
| FCV     | Auxiliary feedwater (AFW)                  |         | 6              | 6     |
|         | Chemical and volume control (CVC)          | 2       |                | 2     |
|         | Component cooling water (CCW)              | 413     | 103            | 516   |
|         | Residual Heat Removal (LCI in BWRs, LPI in | 3       | 4              | 7     |
|         | PWRs) (RHR)                                |         |                |       |
|         | FCV Total                                  | 418     | 113            | 531   |
| FRV     | Main feedwater (MFW)                       | 175     | 41             | 216   |
|         | FRV Total                                  | 175     | 41             | 216   |
|         | Grand Total                                | 593     | 154            | 747   |

Table 39. FCV systems.

Table 40 summarizes the data used in the FCV analysis. Note that the hours for SOP, ELS, and ILS are reactor-year hours.

|                  |                 |        | Data                |            | 5      | <b>Percent with Failures</b> |        |
|------------------|-----------------|--------|---------------------|------------|--------|------------------------------|--------|
| Pooling<br>Group | Failure<br>Mode | Events | Demands or<br>Hours | Components | Plants | Components                   | Plants |
| FCV              | FTOC            | 0      | 11,345 d            | 105        | 15     | 0.0%                         | 0.0%   |
| FCV              | FC              | 8      | 73,637,280 h        | 595        | 84     | 1.2%                         | 8.3%   |
| FCV              | SOP             | 2      | 73,637,280 h        | 595        | 84     | 0.3%                         | 2.4%   |
| FRV              | FTOP            | 49     | 27,637,200 h        | 221        | 77     | 18.1%                        | 36.4%  |

Table 40. FCV unreliability data.

Figure 11 shows the range of valve demands per year in the FCV data set (limited to low-demand components only).

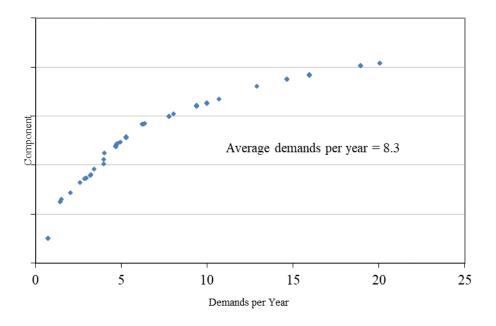



Figure 11. FCV demands per year distribution.

### A-1.11.3 Industry-Average Baselines

Table 41 lists the selected industry distributions of p and  $\lambda$  for the FCV failure modes. These industryaverage failure rates do not account for any recovery.

|                  |                 | Analysis         |          |          |          |          | E     | oistributi | on       |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|------------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α          | β        |
| FCV              | FTOC            | JNID/IL          | 1.74E-07 | 2.01E-05 | 4.41E-05 | 1.70E-04 | Beta  | 0.50       | 1.13E+04 |
| FCV              | FC              | JNID/IL          | 5.89E-08 | 1.11E-07 | 1.15E-07 | 1.87E-07 | Gamma | 8.50       | 7.36E+07 |
| FCV              | SOP             | JNID/IL          | 7.78E-09 | 2.96E-08 | 3.40E-08 | 7.52E-08 | Gamma | 2.50       | 7.36E+07 |
| FRV              | FTOP            | EB/PL/KS         | 2.71E-08 | 1.06E-06 | 1.88E-06 | 6.52E-06 | Gamma | 0.67       | 3.54E+05 |

## A-2. PUMPS

The pump boundary includes the pump, driver, local circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for pumps are listed in Table 42.

The selected ELL mean is the ELS mean multiplied by 0.07, with an assumed  $\alpha$  of 0.3. The selected ILL mean is the ILS mean multiplied by 0.02, with an assumed  $\alpha$  of 0.3. The 0.07 and 0.02 multipliers are based on limited EPIX data for large leaks as explained in Section A.1 in NUREG/CR-6928.

| Pooling Group       | Failure Mode | Parameter | Units | Description            |
|---------------------|--------------|-----------|-------|------------------------|
| Standby             | FTS          | р         | -     | Failure to start       |
|                     | FTR≤1H       | īλ        | 1/h   | Failure to run for 1 h |
|                     | FTR>1H       | λ         | 1/h   | Fail to run beyond 1 h |
| Running/Alternating | FTS          | р         | -     | Failure to start       |
|                     | FTR          | ¯λ        | 1/h   | Fail to run            |
| All                 | ELS          | λ         | 1/h   | External leak small    |
|                     | ELL          | λ         | 1/h   | External leak large    |

Table 42. Pump failure modes.

## A-2.1 Motor-Driven Pump (MDP)

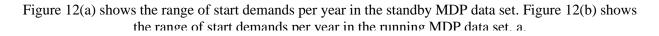
#### A-2.1.1 Component Description

The motor-driven pump (MDP) boundary includes the pump, motor, local circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The MDP component data in this section include only centrifugal type pumps. Component data for positive displacement which are also motor-driven, are presented in Section A-1.1. The failure modes for MDP are listed in Table 42.

#### A-2.1.2 Data Collection and Review

Data for MDP UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the MDP data collection are listed in Table 43 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 200 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|          |                                       | Number of Components |        |       |  |  |  |
|----------|---------------------------------------|----------------------|--------|-------|--|--|--|
|          |                                       | High/                |        |       |  |  |  |
| Pooling  |                                       | Unknown              | Low    |       |  |  |  |
| Group    | System                                | Demand               | Demand | Total |  |  |  |
| Normally | Chemical and volume control (CVC)     | 1                    | 62     | 63    |  |  |  |
| Running  |                                       |                      |        |       |  |  |  |
|          | Chilled water system (CHW)            | 1                    | 2      | 3     |  |  |  |
|          | Circulating water system (CWS)        | 104                  | 32     | 136   |  |  |  |
|          | Component cooling water (CCW)         | 98                   | 281    | 379   |  |  |  |
|          | Condensate system (CDS)               | 5                    | 142    | 147   |  |  |  |
|          | Condensate transfer system (CTS)      | 3                    |        | 3     |  |  |  |
|          | Containment spray recirculation (CSR) | 25                   |        | 25    |  |  |  |


Table 43. MDP systems.

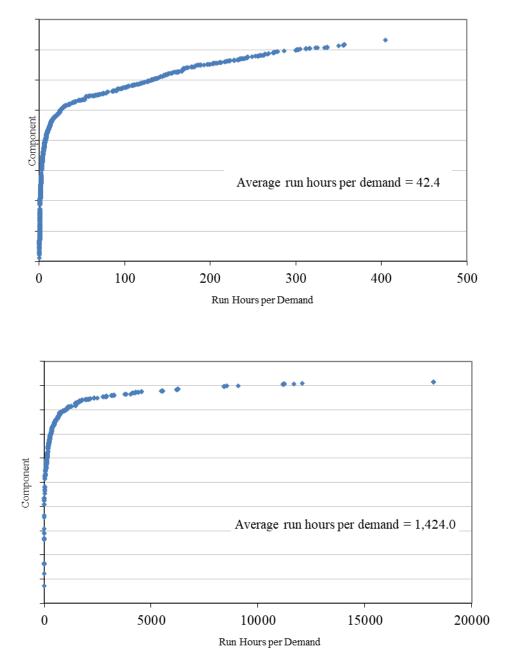

|         |                                                | Num     | ber of Compone | nts   |
|---------|------------------------------------------------|---------|----------------|-------|
|         |                                                | High/   |                |       |
| Pooling |                                                | Unknown | Low            |       |
| Group   | System                                         | Demand  | Demand         | Total |
|         | Control rod drive (CRD)                        | 5       | 41             | 46    |
|         | Emergency power supply (EPS)                   | 2       |                | 2     |
|         | Firewater (FWS)                                | 2       |                | 2     |
|         | Fuel Oil Transfer (FOT)                        | 16      |                | 16    |
|         | Heating ventilation and air conditioning (HVC) | 2       |                | 2     |
|         | High pressure injection (HPI)                  | 2       | 5              | 7     |
|         | Low pressure core spray (LCS)                  | 14      | 5              | 19    |
|         | Main feedwater (MFW)                           | 5       | 41             | 46    |
|         | Normally operating service water (SWN)         | 50      | 88             | 138   |
|         | Reactor protection (RPS)                       | 2       |                | 2     |
|         | Residual Heat Removal (LCI in BWRs, LPI in     | 2       |                | 2     |
|         | PWRs) (RHR)                                    |         |                |       |
|         | Standby service water (SSW)                    | 24      | 15             | 39    |
|         | Chemical and volume control (CVC)              | 363     | 714            | 1077  |
|         | Normally Running Total                         |         | 124            | 124   |
| Standby | Auxiliary feedwater (AFW)                      |         | 152            | 152   |
| -       | Containment spray recirculation (CSR)          |         | 9              | 9     |
|         | Control rod drive (CRD)                        |         | 14             | 14    |
|         | Emergency power supply (EPS)                   |         | 1              | 1     |
|         | Firewater (FWS)                                |         | 18             | 18    |
|         | Fuel Oil Transfer (FOT)                        |         | 9              | 9     |
|         | High pressure core spray (HCS)                 |         | 168            | 168   |
|         | High pressure injection (HPI)                  |         | 67             | 67    |
|         | Low pressure core spray (LCS)                  |         | 216            | 216   |
|         | Normally operating service water (SWN)         |         | 308            | 308   |
|         | Residual Heat Removal (LCI in BWRs, LPI in     | 2       | 211            | 213   |
|         | PWRs) (RHR)                                    |         |                |       |
|         | Standby service water (SSW)                    |         |                |       |
|         | Standby Total                                  | 2       | 1297           | 1299  |
|         | Grand Total                                    | 365     | 2011           | 2376  |

Table 44 summarizes the data obtained from EPIX and used in the MDP analysis. Note that the hours for ELS are reactor-year hours.

| Table 44. | MDP | unreliab | ility | data. |
|-----------|-----|----------|-------|-------|
|-----------|-----|----------|-------|-------|

|         |         |          | Data          | Count      | s      | <b>Percent with Failures</b> |        |
|---------|---------|----------|---------------|------------|--------|------------------------------|--------|
| Pooling | Failure |          | Demands or    |            |        |                              |        |
| Group   | Mode    | Failures | Hours         | Components | Plants | Components                   | Plants |
| STBY    | FTS     | 227      | 410,593 d     | 1,311      | 107    | 14.3%                        | 75.7%  |
| STBY    | FTR<1H  | 31       | 378,369 h     | 1,305      | 107    | 2.1%                         | 22.4%  |
| STBY    | FTR>1H  | 92       | 19,248,030 h  | 1,311      | 107    | 6.0%                         | 47.7%  |
|         | ELS     | 59       | 288,839,600 h | 2,351      | 105    | 2.2%                         | 32.4%  |
|         | ELL     |          |               | 2,351      | 105    |                              |        |
| NR      | FTS     | 89       | 125,005 d     | 649        | 102    | 11.4%                        | 46.1%  |
| NR      | FTR     | 129      | 56,750,330 h  | 650        | 102    | 15.2%                        | 50.0%  |
| CCW     | FTS     | 31       | 80,067 d      | 288        | 86     | 9.4%                         | 27.9%  |
| CCW     | FTR     | 31       | 17,527,790 h  | 288        | 86     | 9.0%                         | 26.7%  |
| SWS     | FTS     | 132      | 225,636 d     | 529        | 100    | 19.7%                        | 57.0%  |
| SWS     | FTR     | 100      | 25,635,460 h  | 529        | 100    | 14.7%                        | 51.0%  |
| CWS     | FTR     | 15       | 3,116,679 h   | 31         | 12     | 38.7%                        | 58.3%  |





b.

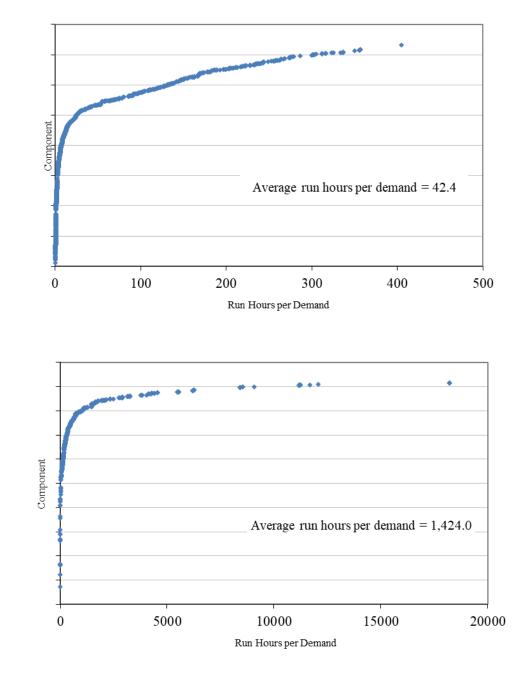



Figure 13(a) shows the range of run hours per demand in the standby MDP data set. a.

b.

Figure 13(b) shows the range of run hours per demands in the running MDP data set.

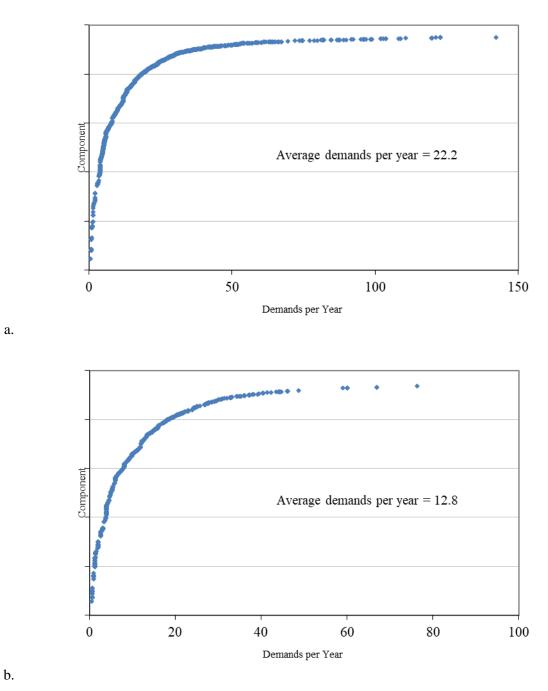
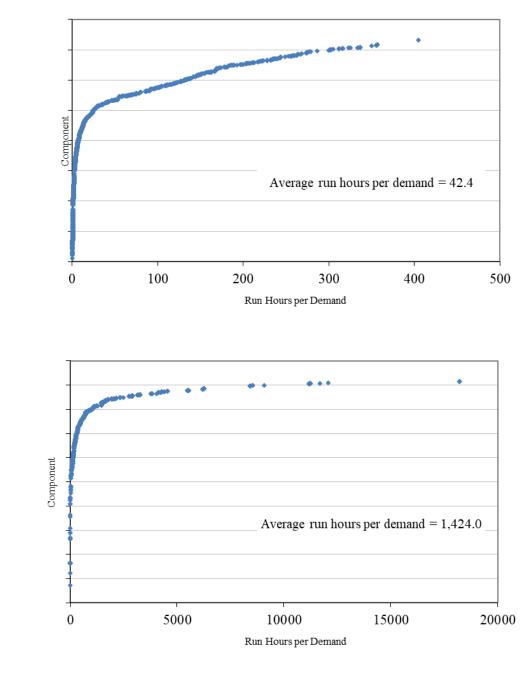




Figure 12. a. Standby MDP demands per year distribution. b. Running/alternating MDP demands per year distribution.



b.

a.

Figure 13. a. Standby MDP run hours per demand distribution. b. Running/alternating MDP run hours per demand distribution.

### A-2.1.3 Industry-Average Baselines

Table 45 lists the selected industry distributions of p and  $\lambda$  for the MDP failure modes. These industry-average failure rates do not account for any recovery.

|                  |                 | Analysis         |          |          |          |          | ]     | Distributi | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|------------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α          | β        |
| STBY             | FTS             | EB/PL/KS         | 1.09E-04 | 4.96E-04 | 5.88E-04 | 1.38E-03 | Beta  | 2.07       | 3.52E+03 |
| STBY             | FTR<1H          | EB/PL/KS         | 7.34E-07 | 4.68E-05 | 9.13E-05 | 3.33E-04 | Gamma | 0.58       | 6.34E+03 |
| STBY             | FTR>1H          | EB/PL/KS         | 3.58E-08 | 3.77E-06 | 8.12E-06 | 3.10E-05 | Gamma | 0.51       | 6.29E+04 |
|                  | ELS             | EB/PL/KS         | 3.16E-09 | 1.14E-07 | 1.98E-07 | 6.80E-07 | Gamma | 0.68       | 3.45E+06 |
|                  | ELL             |                  | 1.48E-12 | 3.38E-09 | 1.39E-08 | 6.34E-08 | Gamma | 0.30       | 2.16E+07 |
| NR               | FTS             | EB/PL/KS         | 4.86E-05 | 5.62E-04 | 7.86E-04 | 2.30E-03 | Beta  | 1.08       | 1.37E+03 |
| NR               | FTR             | EB/PL/KS         | 3.94E-07 | 1.89E-06 | 2.26E-06 | 5.38E-06 | Gamma | 1.97       | 8.72E+05 |
| CCW              | FTS             | EB/PL/KS         | 1.23E-05 | 2.86E-04 | 4.57E-04 | 1.49E-03 | Beta  | 0.80       | 1.74E+03 |
| CCW              | FTR             | EB/PL/KS         | 2.86E-07 | 1.47E-06 | 1.77E-06 | 4.33E-06 | Gamma | 1.85       | 1.04E+06 |
| SWS              | FTS             | EB/PL/KS         | 2.43E-05 | 4.80E-04 | 7.43E-04 | 2.36E-03 | Beta  | 0.85       | 1.14E+03 |
| SWS              | FTR             | EB/PL/KS         | 3.09E-07 | 3.08E-06 | 4.20E-06 | 1.19E-05 | Gamma | 1.17       | 2.79E+05 |
| CWS              | FTR             | EB/PL/KS         | 1.81E-06 | 4.51E-06 | 4.86E-06 | 9.09E-06 | Gamma | 4.57       | 9.41E+05 |

Table 45. Selected industry distributions of p and  $\lambda$  for MDPs.

# A-2.2 Turbine-Driven Pump (TDP)

### A-2.2.1 Component Description

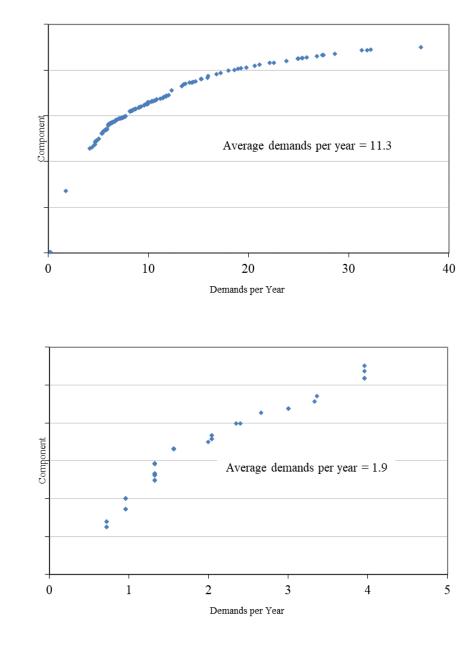
The TDP boundary includes the pump, turbine, governor control, steam emission valve, local lubrication or cooling systems, and local instrumentation and controls. The failure modes for TDP are listed in Table 42.

#### A-2.2.2 Data Collection and Review

Data for TDP UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the TDP data collection are listed in Table 46 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 200 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|          |                                       | Num     | ber of Compone | nts   |
|----------|---------------------------------------|---------|----------------|-------|
|          |                                       | High/   |                |       |
| Pooling  |                                       | Unknown | Low            |       |
| Group    | System                                | Demand  | Demand         | Total |
| Normally | Main feedwater (MFW)                  | 4       | 42             | 46    |
| Running  |                                       |         |                |       |
|          | Normally Running Total                | 4       | 42             | 46    |
| Standby  | Auxiliary feedwater (AFW)             |         | 74             | 74    |
|          | High pressure coolant injection (HCI) |         | 28             | 28    |
|          | Reactor core isolation (RCI)          |         | 31             | 31    |
|          | Standby Total                         |         | 133            | 133   |
|          | Grand Total                           | 4       | 175            | 179   |

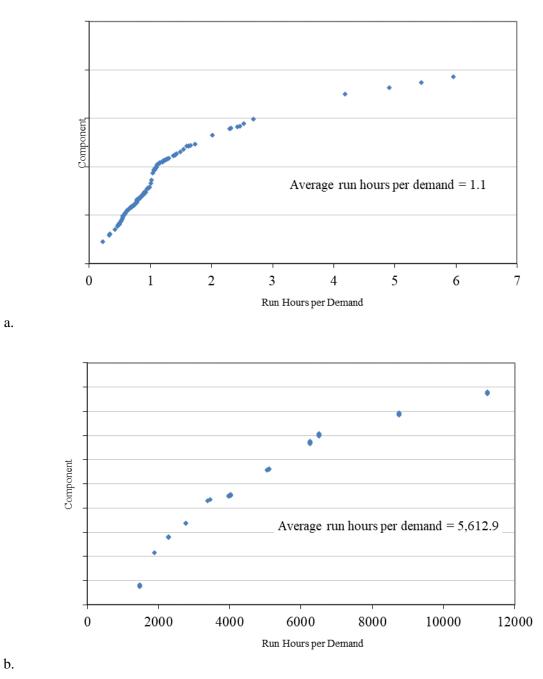
Table 46. TDP systems.

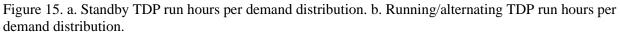

Table 47 summarizes the data obtained from EPIX and used in the TDP analysis. Note that the hours for ELS are reactor-year hours.

|         |         | ]        | Data         | Count      | <b>S</b> | Percent with Failures |        |  |
|---------|---------|----------|--------------|------------|----------|-----------------------|--------|--|
| Pooling | Failure |          | Demands or   |            |          |                       |        |  |
| Group   | Mode    | Failures | Hours        | Components | Plants   | Components            | Plants |  |
| STBY    | FTS     | 105      | 22,512 d     | 133        | 99       | 48.1%                 | 55.6%  |  |
| STBY    | FTR<1H  | 34       | 15,530 h     | 133        | 99       | 19.5%                 | 23.2%  |  |
| STBY    | FTR>1H  | 17       | 4,454 h      | 133        | 99       | 12.0%                 | 16.2%  |  |
| NR      | FTS     | 5        | 1,147 d      | 42         | 20       | 11.9%                 | 20.0%  |  |
| NR      | FTR     | 39       | 4,938,575 h  | 42         | 20       | 47.6%                 | 60.0%  |  |
| -       | ELS     | 10       | 24,190,380 h | 191        | 103      | 4.7%                  | 8.7%   |  |
| -       | ELL     |          |              | 191        | 103      |                       |        |  |
| AFW     | FTS     | 52       | 15,672 d     | 74         | 66       | 39.2%                 | 43.9%  |  |
| AFW     | FTR<1H  | 18       | 10,670 h     | 74         | 66       | 14.9%                 | 16.7%  |  |
| AFW     | FTR>1H  | 8        | 3,295 h      | 74         | 66       | 10.8%                 | 12.1%  |  |
| HCI-RCI | FTS     | 25       | 4,026 d      | 31         | 31       | 48.4%                 | 48.4%  |  |
| HCI-RCI | FTR<1H  | 16       | 4,860 h      | 59         | 33       | 25.4%                 | 36.4%  |  |
| HCI-RCI | FTR>1H  | 9        | 1,159 h      | 59         | 33       | 13.6%                 | 24.2%  |  |

Table 47. TDP unreliability data.

|         |         |          | Data        |            | Counts |            | <b>Percent with Failures</b> |  |
|---------|---------|----------|-------------|------------|--------|------------|------------------------------|--|
| Pooling | Failure |          | Demands or  |            |        |            |                              |  |
| Group   | Mode    | Failures | Hours       | Components | Plants | Components | Plants                       |  |
| MFW     | FTS     | 5        | 1,147 d     | 42         | 20     | 11.9%      | 20.0%                        |  |
| MFW     | FTR     | 39       | 4,938,575 h | 42         | 20     | 47.6%      | 60.0%                        |  |


Figure 14(a) shows the range of start demands per year in the standby TDP data set. Figure 14(b) shows the range of start demands per year in the running/alternating TDP data set. Figure 15(a) shows the range of run hours per demand in the standby TDP data set. Figure 15(b) shows the range of run hours per demands in the running TDP data set.




#### b.

a.

Figure 14. a. Standby TDP demands per year distribution. b. Running/alternating TDP demands per year distribution.





#### A-2.2.3 Industry-Average Baselines

Table 48 lists the selected industry distributions of p and  $\lambda$  for the TDP failure modes. These industryaverage failure rates do not account for any recovery.

|         |         | Analysis |          |          |          |          |       | Distributi | on       |
|---------|---------|----------|----------|----------|----------|----------|-------|------------|----------|
| Pooling | Failure | Type /   |          |          |          |          |       |            |          |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α          | β        |
| STBY    | FTS     | EB/PL/KS | 4.59E-04 | 4.02E-03 | 5.32E-03 | 1.47E-02 | Beta  | 1.26       | 2.35E+02 |
| STBY    | FTR<1H  | EB/PL/KS | 5.17E-06 | 1.04E-03 | 2.56E-03 | 1.03E-02 | Gamma | 0.44       | 1.73E+02 |
| STBY    | FTR>1H  | EB/PL/KS | 1.23E-05 | 2.56E-03 | 6.35E-03 | 2.55E-02 | Gamma | 0.44       | 6.95E+01 |
| NR      | FTS     | EB/PL/KS | 5.45E-05 | 2.52E-03 | 4.60E-03 | 1.62E-02 | Beta  | 0.63       | 1.37E+02 |
| NR      | FTR     | EB/PL/KS | 2.53E-07 | 5.37E-06 | 8.45E-06 | 2.71E-05 | Gamma | 0.82       | 9.76E+04 |
|         | ELS     | EB/PL/KS | 7.42E-08 | 3.47E-07 | 4.13E-07 | 9.75E-07 | Gamma | 2.02       | 4.90E+06 |
|         | ELL     |          | 3.09E-12 | 7.05E-09 | 2.89E-08 | 1.32E-07 | Gamma | 0.30       | 1.04E+07 |
| AFW     | FTS     | EB/PL/KS | 1.17E-04 | 2.43E-03 | 3.79E-03 | 1.21E-02 | Beta  | 0.83       | 2.18E+02 |
| AFW     | FTR<1H  | JNID/IL  | 1.12E-03 | 1.70E-03 | 1.73E-03 | 2.44E-03 | Gamma | 18.50      | 1.07E+04 |
| AFW     | FTR>1H  | JNID/IL  | 1.31E-03 | 2.48E-03 | 2.58E-03 | 4.18E-03 | Gamma | 8.50       | 3.30E+03 |
| HCI-RCI | FTS     | EB/PL/KS | 6.02E-04 | 5.07E-03 | 6.68E-03 | 1.82E-02 | Beta  | 1.29       | 1.92E+02 |
| HCI-RCI | FTR<1H  | EB/PL/KS | 6.73E-04 | 2.86E-03 | 3.35E-03 | 7.68E-03 | Gamma | 2.22       | 6.64E+02 |
| HCI-RCI | FTR>1H  | JNID/IL  | 4.36E-03 | 7.90E-03 | 8.20E-03 | 1.30E-02 | Gamma | 9.50       | 1.16E+03 |
| MFW     | FTS     | EB/PL/KS | 5.45E-05 | 2.52E-03 | 4.60E-03 | 1.62E-02 | Beta  | 0.63       | 1.37E+02 |
| MFW     | FTR     | EB/PL/KS | 2.53E-07 | 5.37E-06 | 8.45E-06 | 2.71E-05 | Gamma | 0.82       | 9.76E+04 |

Table 48. Selected industry distributions of p and  $\lambda$  for TDPs.

# A-2.4 Engine-Driven Pump (EDP)

#### A-2.4.1 Component Description

The diesel-driven pump (EDP) boundary includes the pump, diesel engine, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for EDPs are listed in Table 42.

### A-2.4.2 Data Collection and Review

Data for EDP UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the EDP data collection are listed in Table 49 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 200 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|          |                              | Num     | ber of Componer | nts   |
|----------|------------------------------|---------|-----------------|-------|
|          |                              | High/   |                 |       |
| Pooling  |                              | Unknown | Low             |       |
| Group    | System                       | Demand  | Demand          | Total |
| Normally | Auxiliary feedwater (AFW)    | 1       |                 | 1     |
| Running  | -                            |         |                 |       |
|          | Firewater (FWS)              | 18      | 5               | 23    |
|          | Main feedwater (MFW)         | 1       |                 | 1     |
|          | Standby service water (SSW)  | 3       |                 | 3     |
|          | Normally Running Total       | 23      | 5               | 28    |
| Standby  | Auxiliary feedwater (AFW)    |         | 5               | 5     |
| -        | Emergency power supply (EPS) |         | 1               | 1     |
|          | Firewater (FWS)              |         | 20              | 20    |
|          | Standby service water (SSW)  |         | 10              | 10    |
|          | Standby Total                |         | 36              | 36    |
|          | Grand Total                  | 23      | 41              | 64    |

Table 49. EDP systems.

Table 50 summarizes the data obtained from EPIX and used in the EDP analysis.

| <b>D</b> 11 |         | Ι        | Data<br>Demonds or |            | Counts |            | <b>Percent with Failures</b> |  |
|-------------|---------|----------|--------------------|------------|--------|------------|------------------------------|--|
| Pooling     | Failure | <b></b>  | Demands or         | <b>G</b> ( |        | <b>G</b> ( |                              |  |
| Group       | Mode    | Failures | Hours              | Components | Plants | Components | Plants                       |  |
| STBY        | FTS     | 13       | 17,773 d           | 44         | 27     | 20.5%      | 29.6%                        |  |
| STBY        | FTR<1H  | 6        | 9,888 h            | 39         | 25     | 12.8%      | 20.0%                        |  |
| STBY        | FTR>1H  | 15       | 4,754 h            | 44         | 27     | 18.2%      | 25.9%                        |  |
|             | ELS     | 6        | 7,690,189 h        | 69         | 40     | 8.7%       | 15.0%                        |  |
|             | ELL     |          |                    | 69         | 40     |            |                              |  |
| AFW         | FTS     | 1        | 1,163 d            | 5          | 5      | 20.0%      | 20.0%                        |  |
| AFW         | FTR<1H  | 2        | 759 h              | 5          | 5      | 40.0%      | 40.0%                        |  |
| AFW         | FTR>1H  | 2        | 234 h              | 5          | 5      | 40.0%      | 40.0%                        |  |

#### Table 50. EDP unreliability data.

Figure 16 shows the range of start demands per year in the standby EDP data set. Figure 17 shows the range of run hours per demand in the standby EDP data set.

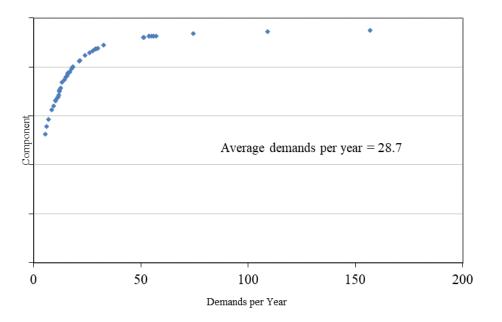



Figure 16. Standby EDP demands per year distribution.

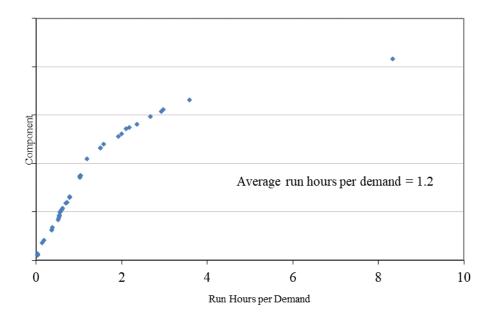



Figure 17. Standby EDP run hours per demand distribution.

### A-2.4.3 Industry-Average Baselines

Table 51 lists the selected industry distributions of p and  $\lambda$  for the EDP failure modes. These industryaverage failure rates do not account for any recovery.

|                  |                 | Analysis         |          |          |          |          |       | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| STBY             | FTS             | JNID/IL          | 4.53E-04 | 7.39E-04 | 7.60E-04 | 1.13E-03 | Beta  | 13.50     | 1.78E+04 |
| STBY             | FTR<1H          | JNID/IL          | 2.98E-04 | 6.24E-04 | 6.57E-04 | 1.13E-03 | Gamma | 6.50      | 9.89E+03 |
| STBY             | FTR>1H          | JNID/IL          | 2.03E-03 | 3.19E-03 | 3.26E-03 | 4.74E-03 | Gamma | 15.50     | 4.75E+03 |
|                  | ELS             | JNID/IL          | 3.83E-07 | 8.02E-07 | 8.45E-07 | 1.45E-06 | Gamma | 6.50      | 7.69E+06 |
|                  | ELL             |                  | 6.33E-12 | 1.44E-08 | 5.92E-08 | 2.71E-07 | Gamma | 0.30      | 5.07E+06 |
| AFW              | FTS             | JNID/IL          | 1.52E-04 | 1.02E-03 | 1.29E-03 | 3.36E-03 | Beta  | 1.50      | 1.16E+03 |
| AFW              | FTR<1H          | JNID/IL          | 7.55E-04 | 2.87E-03 | 3.29E-03 | 7.29E-03 | Gamma | 2.50      | 7.59E+02 |
| AFW              | FTR>1H          | JNID/IL          | 2.45E-03 | 9.30E-03 | 1.07E-02 | 2.37E-02 | Gamma | 2.50      | 2.34E+02 |

Table 51. Selected industry distributions of p and  $\lambda$  for EDPs.

# A-2.5 Positive Displacement Pump (PDP)

#### A-2.5.1 Component Description

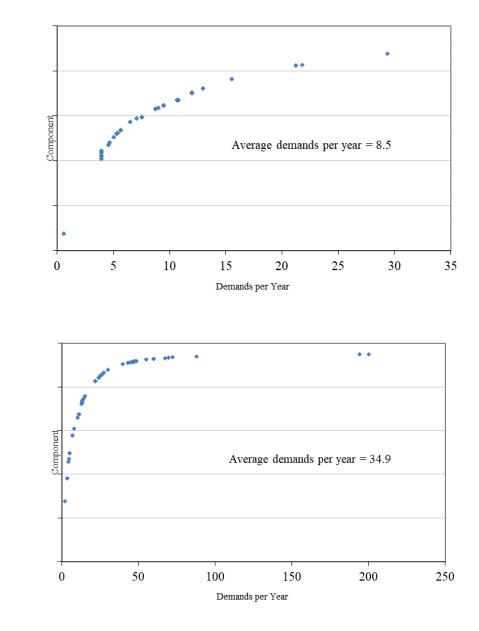
The positive displacement pump (PDP) boundary includes the pump, motor, local circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for PDP are listed in Table 42.

#### A-2.5.2 Data Collection and Review

Data for PDP UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the PDP data collection are listed in Table 52 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 200 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|                     |                                       | Num     | ber of Compone | nts   |
|---------------------|---------------------------------------|---------|----------------|-------|
|                     |                                       | High/   |                |       |
| Pooling             |                                       | Unknown | Low            |       |
| Group               | System                                | Demand  | Demand         | Total |
| Normally<br>Running | Chemical and volume control (CVC)     | 24      | 61             | 85    |
|                     | Containment spray recirculation (CSR) | 6       |                | 6     |
|                     | Emergency power supply (EPS)          | 4       |                | 4     |
|                     | Fuel Oil Transfer (FOT)               | 3       |                | 3     |
|                     | High pressure injection (HPI)         | 3       |                | 3     |
|                     | Instrument air (IAS)                  | 2       |                | 2     |
|                     | Main feedwater (MFW)                  | 2       | 1              | 3     |
|                     | Standby liquid control (SLC)          | 1       |                | 1     |
|                     | Normally Running Total                | 45      | 62             | 107   |
| Standby             | Emergency power supply (EPS)          |         | 2              | 2     |
|                     | High pressure injection (HPI)         |         | 2              | 2     |
|                     | Standby liquid control (SLC)          |         | 70             | 70    |
|                     | Standby Total                         |         | 74             | 74    |
|                     | Grand Total                           | 45      | 136            | 181   |

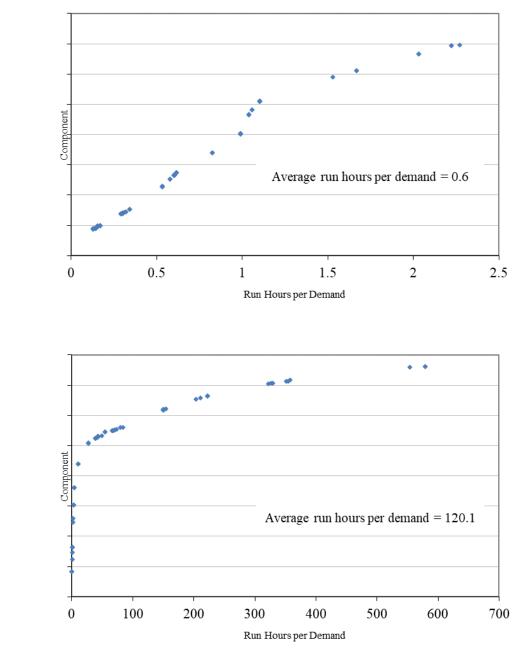
Table 52. PDP systems.


Table 53summarizes the data obtained from EPIX and used in the PDP analysis. Note that the hours for ELS are reactor-year hours.

|         |         | Ι        | Data        |            | 5      | Percent with Failures |        |  |
|---------|---------|----------|-------------|------------|--------|-----------------------|--------|--|
| Pooling | Failure |          | Demands or  |            |        |                       |        |  |
| Group   | Mode    | Failures | Hours       | Components | Plants | Components            | Plants |  |
| NR      | FTS     | 53       | 28,865 d    | 57         | 25     | 50.9%                 | 64.0%  |  |
| NR      | FTR     | 40       | 2,353,162 h | 54         | 24     | 38.9%                 | 54.2%  |  |
| STBY    | FTS     | 10       | 9,064 d     | 72         | 34     | 13.9%                 | 26.5%  |  |
| STBY    | FTR<1H  | 1        | 4,045 h     | 72         | 34     | 1.4%                  | 2.9%   |  |
| STBY    | FTR>1H  | 0        | 1,505 h     | 72         | 34     | 0.0%                  | 0.0%   |  |

Table 53 PDP unreliability data

|         |         | ]              | Data         | Counts     | 5      | <b>Percent with Failures</b> |        |
|---------|---------|----------------|--------------|------------|--------|------------------------------|--------|
| Pooling | Failure |                | Demands or   |            |        |                              |        |
| Group   | Mode    | Failures Hours |              | Components | Plants | Components                   | Plants |
|         | ELS     | 15             | 21,211,980 h | 171        | 73     | 6.4%                         | 12.3%  |
|         | ELL     |                |              | 171        | 73     |                              |        |


Figure 18a shows the range of start demands per year in the standby PDP data set. Figure 18b shows the range of start demands per year in the running PDP data set. Figure 19a shows the range of run hours per demand in the standby PDP data set. Figure 19b shows the range of run hours per demands in the running PDP data set.



b.

a.

Figure 18. a. Standby PDP demands per year distribution. b. Running/alternating PDP demands per year distribution.



b.

a.

Figure 19. a. Standby PDP run hours per demand distribution. b. Running/alternating PDP run hours per demand distribution.

### A-2.5.3 Industry-Average Baselines

Table 54 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

|                  |                 | Analysis         |          |          |          |          |       | Distributi | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|------------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α          | β        |
| NR               | FTS             | EB/PL/KS         | 7.46E-05 | 1.58E-03 | 2.47E-03 | 7.92E-03 | Beta  | 0.83       | 3.33E+02 |
| NR               | FTR             | EB/PL/KS         | 1.81E-06 | 1.45E-05 | 1.91E-05 | 5.17E-05 | Gamma | 1.33       | 6.98E+04 |
| STBY             | FTS             | JNID/IL          | 6.40E-04 | 1.12E-03 | 1.16E-03 | 1.80E-03 | Beta  | 10.50      | 9.05E+03 |
| STBY             | FTR<1H          | JNID/IL          | 4.34E-05 | 2.92E-04 | 3.71E-04 | 9.65E-04 | Gamma | 1.50       | 4.05E+03 |
| STBY             | FTR>1H          | JNID/IL          | 1.31E-06 | 1.52E-04 | 3.32E-04 | 1.28E-03 | Gamma | 0.50       | 1.50E+03 |
|                  | ELS             | JNID/IL          | 4.55E-07 | 7.15E-07 | 7.31E-07 | 1.06E-06 | Gamma | 15.50      | 2.12E+07 |
|                  | ELL             |                  | 5.48E-12 | 1.25E-08 | 5.12E-08 | 2.34E-07 | Gamma | 0.30       | 5.86E+06 |

Table 54. Selected industry distributions of p and  $\lambda$  for PDPs.

## A-2.6 AFW Pump Volute (PMP)

#### A-2.6.1 Component Description

The AFW pump volute (PMP) boundary includes the pump volute portion of AFW EDPs, MDPs, and TDPs. PMP is used only to support the quantification of common-cause failure events across EDPs, MDPs, and TDPs. The failure modes for PMP are listed in Table 42.

#### A-2.6.2 Data Collection and Review

Data for PMP UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the PMP data collection are listed in Table 55 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 200 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                           | Num     | ber of Compone | nts   |
|---------|---------------------------|---------|----------------|-------|
|         |                           | High/   |                |       |
| Pooling |                           | Unknown | Low            |       |
| Group   | System                    | Demand  | Demand         | Total |
| Standby | Auxiliary feedwater (AFW) | 1       | 203            | 204   |
| Standby | •                         |         | 203            | 204   |
| Total   |                           |         |                |       |
| Grand   |                           | 1       | 203            | 204   |
| Total   |                           |         |                |       |

Table 55. PMP systems.

To identify PMP failures within the AFW EDP, MDP, and TDP failures, EPIX data was analyzed outside of RADS to determine the failures in the PMP subcomponent. Table 56 summarizes the data obtained from the event review and used in the PMP analysis.

| Pooling | Failure |          | Data                | Counts     | 5      | <b>Percent with Failures</b> |        |
|---------|---------|----------|---------------------|------------|--------|------------------------------|--------|
| Group   | Mode    | Failures | Demands or<br>Hours | Components | Plants | Components                   | Plants |
| STBY    | FTR     | 16       | 133,247 h           | 208        | 70     | 7.7%                         | 22.9%  |

### Table 56. PMP unreliability data.

#### A-2.6.3 Industry-Average Baselines

Table 57 lists the selected industry distributions of p and  $\lambda$  for the PMP failure modes. These industry-average failure rates do not account for any recovery.

| Analysis         |                 |                  |          |          |          |          | Distribution |       |          |  |
|------------------|-----------------|------------------|----------|----------|----------|----------|--------------|-------|----------|--|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре         | α     | β        |  |
| STBY             | FTR             | JNID/IL          | 7.84E-05 | 1.22E-04 | 1.24E-04 | 1.78E-04 | Gamma        | 16.50 | 1.33E+05 |  |

Table 57. Selected industry distributions of p and  $\lambda$  for PMPs.

### A-3. GENERATORS

The generators covered in this data sheet include those within the Class 1E ac electrical power system, the high-pressure core spray (HPCS) systems, and station blackout (SBO) generators.

The failure modes for the generator are listed in Table 58.

| Pooling Group | Failure Mode | Parameter | Units | Description                  |
|---------------|--------------|-----------|-------|------------------------------|
| All           | FTS          | p         | -     | Failure to start             |
|               | FTLR         | p         | -     | Fail to load and run for 1 h |
|               | FTR>1H       | λ         | 1/h   | Fail to run beyond 1 h       |

Table 58. Generator failure modes.

Table 59 shows the breakdown of the generator component data available for calculations. Not all of the generators are provided with demand and run time estimates. The column, "Unknown Demand" shows the generator counts for which there are no demand and/or run time estimates. The component count is divided into two categories: Unknown Demand which shows the counts for those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 200$  demands per year.

Table 59. Generator component counts.

|         |                                | Num     | ber of Compone | nts   |  |
|---------|--------------------------------|---------|----------------|-------|--|
| Pooling |                                | Unknown | Low            |       |  |
| Group   | System                         | Demand  | Demand         | Total |  |
| CTG     | Emergency power supply (EPS)   | 2       | 3              | 5     |  |
|         | Plant ac power (ACP)           | 2       |                | 2     |  |
|         | CTG Total                      | 4       | 3              | 7     |  |
| EDG     | Emergency power supply (EPS)   | 4       | 224            | 228   |  |
|         | Plant ac power (ACP)           | 1       |                | 1     |  |
|         | EDG Total                      | 5       | 224            | 229   |  |
| HPCS    | High pressure core spray (HCS) |         | 8              | 8     |  |
|         | HPCS Total                     |         | 8              | 8     |  |
| HTG     | Emergency power supply (EPS)   |         | 2              | 2     |  |
|         | HTG Total                      |         | 2              | 2     |  |
| SBO     | Emergency power supply (EPS)   | 4       | 2              | 6     |  |
|         | Plant ac power (ACP)           | 14      | 2              | 16    |  |
|         | SBO Total                      | 18      | 4              | 22    |  |
|         | Grand Total                    | 27      | 241            | 268   |  |

# A-3.1 Emergency Diesel Generators (EDG)

#### A-3.1.1 Component Description

The emergency diesel generators (EDGs) covered in this data sheet are those within the Class 1E ac electrical power system at U.S. commercial NPPs.

The EDG boundary includes the diesel engine with all components in the exhaust path, electrical generator, generator exciter, output breaker, combustion air, lube oil systems, fuel oil system, and starting compressed air system, and local instrumentation and control circuitry. However, the sequencer is not included. For the service water system providing cooling to the EDGs, only the devices providing control of cooling flow to the EDG heat exchangers are included. Room heating and ventilating are not included. The failure modes for EDG are listed in Table 58.

### A-3.1.2 Data Collection and Review

Data for EDG UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the EDG data collection are listed in Table 60, with the number of components included with each system.

Table 60 summarizes the data obtained from the event review and used in the EDG analysis.

|         |         |          | Data       |           | S      | <b>Percent with Failures</b> |        |  |
|---------|---------|----------|------------|-----------|--------|------------------------------|--------|--|
| Pooling | Failure |          | Demands or | Component |        |                              |        |  |
| Group   | Mode    | Failures | Hours      | S         | Plants | Components                   | Plants |  |
| EDG     | FTS     | 136      | 61,363 d   | 234       | 95     | 41.9%                        | 70.5%  |  |
| EDG     | FTLR    | 172      | 53,343 h   | 234       | 95     | 49.6%                        | 81.1%  |  |
| EDG     | FTR     | 155      | 137,584 h  | 234       | 95     | 46.2%                        | 75.8%  |  |

Table 60. EDG unreliability data.

Figure 20 shows the range of start demands per year in the EDG data set. Figure 21 shows the range of run hours per demand in the EDG data set.

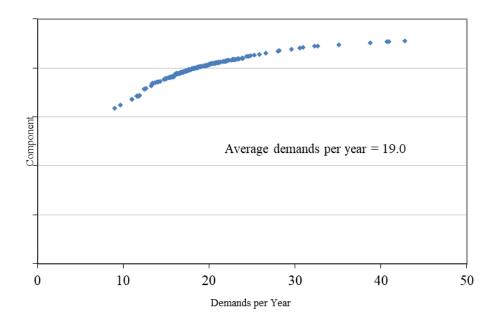



Figure 20. EDG demands per year distribution.

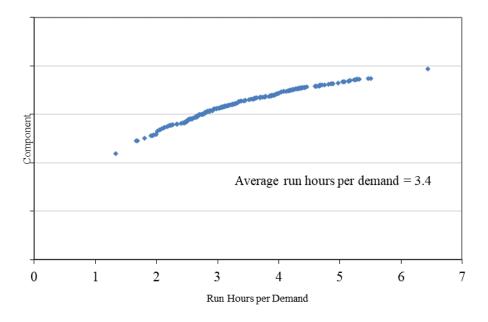



Figure 21. EDG run hours per demand distribution.

### A-3.1.3 Industry-Average Baselines

Table 61 lists the selected industry distributions of p and  $\lambda$  for the EDG failure modes. These industry-average failure rates do not account for any recovery.

Table 61. Selected industry distributions of p and  $\lambda$  for EDGs.

|             |         | 2        | 1        |          |          |          |       |              |          |  |
|-------------|---------|----------|----------|----------|----------|----------|-------|--------------|----------|--|
| <b>D</b> 11 |         | Analysis |          |          |          |          | I     | Distribution |          |  |
| Pooling     | Failure | Type /   |          |          |          |          |       |              |          |  |
| Group       | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α            | β        |  |
| EDG         | FTS     | EB/PL/KS | 1.53E-03 | 2.19E-03 | 2.22E-03 | 3.02E-03 | Beta  | 23.8         | 1.07E+04 |  |
|             |         |          |          |          |          |          |       | 0            |          |  |
| EDG         | FTLR    | EB/PL/KS | 1.05E-03 | 3.01E-03 | 3.31E-03 | 6.60E-03 | Gamma | 3.61         | 1.09E+03 |  |
| EDG         | FTR     | EB/PL/KS | 3.90E-04 | 1.08E-03 | 1.18E-03 | 2.31E-03 | Gamma | 3.83         | 3.25E+03 |  |

# A-3.2 Hydro Turbine Generator (HTG)

### A-3.2.1 Component Description

The hydro turbine generator (HTG) boundary includes the turbine, generator, circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for HTG are listed in Table 58.

### A-3.2.2 Data Collection and Review

Data for HTG UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the HTG data collection are listed in Table 62, with the number of components included with each system.

Table 62 summarizes the data obtained from EPIX and used in the HTG analysis.

Table 62. HTG unreliability data.

|         |         | D          | Data     |            | 6      | <b>Percent with Failures</b> |        |  |
|---------|---------|------------|----------|------------|--------|------------------------------|--------|--|
| Pooling | Failure | Demands or |          |            |        |                              |        |  |
| Group   | Mode    | Failures   | Hours    | Components | Plants | Components                   | Plants |  |
| HTG     | FTS     | 6          | 6,362 d  | 2          | 1      | 100.0%                       | 100.0% |  |
| HTG     | FTLR    | 2          | 4,582 h  | 2          | 1      | 50.0%                        | 100.0% |  |
| HTG     | FTR     | 1          | 13,874 h | 2          | 1      | 50.0%                        | 100.0% |  |
| HTG     | FTR     | 1          | 13,874 h | 2          | 1      | 50.0%                        |        |  |

#### A-3.2.3 Industry-Average Baselines

Table 63 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

#### Table 63. Selected industry distributions of p and $\lambda$ for HTGs.

|                  |                 | Analysis         |          |          |          |          |       | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| HTG              | FTS             | JNID/IL          | 4.63E-04 | 9.69E-04 | 1.02E-03 | 1.76E-03 | Beta  | 6.50      | 6.36E+03 |
| HTG              | FTLR            | JNID/IL          | 1.25E-04 | 4.75E-04 | 5.46E-04 | 1.21E-03 | Gamma | 2.50      | 4.58E+03 |
| HTG              | FTR             | JNID/IL          | 1.27E-05 | 8.51E-05 | 1.08E-04 | 2.81E-04 | Gamma | 1.50      | 1.39E+04 |

## A-3.3 Combustion Turbine Generator (CTG)

### A-3.3.1 Component Description

The combustion turbine generator (CTG) boundary includes the gas turbine, generator, circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for CTG are listed in Table 58.

#### A-3.3.2 Data Collection and Review

Data for CTG UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the CTG data collection are listed in Table 64, with the number of components included with each system.

Table 64 summarizes the data obtained from the plant and used in the CTG analysis.

|         |         | D        | ata        | Counts     | 3      | Percent with Failures |        |  |
|---------|---------|----------|------------|------------|--------|-----------------------|--------|--|
| Pooling | Failure |          | Demands or |            |        |                       |        |  |
| Group   | Mode    | Failures | Hours      | Components | Plants | Components            | Plants |  |
| CTG     | FTS     | 21       | 419 d      | 3          | 3      | 100.0%                | 100.0% |  |
| CTG     | FTLR    | 2        | 360 h      | 2          | 2      | 100.0%                | 100.0% |  |
| CTG     | FTR     | 4        | 959 h      | 3          | 3      | 100.0%                | 100.0% |  |

Table 64. CTG unreliability data.

### A-3.3.3 Industry-Average Baselines

Table 65 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

Table 65. Selected industry distributions of p and  $\lambda$  for CTGs.

|                  |                 | Analysis         |          |          |          |          |       | Distribut | Distribution |  |  |  |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|--------------|--|--|--|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β            |  |  |  |
| CTG              | FTS             | EB/PL/KS         | 5.81E-03 | 5.40E-02 | 7.03E-02 | 1.90E-01 | Beta  | 1.20      | 1.59E+01     |  |  |  |
| CTG              | FTLR            | JNID/IL          | 1.59E-03 | 6.04E-03 | 6.94E-03 | 1.54E-02 | Gamma | 2.50      | 3.60E+02     |  |  |  |
| CTG              | FTR             | JNID/IL          | 1.73E-03 | 4.35E-03 | 4.69E-03 | 8.82E-03 | Gamma | 4.50      | 9.59E+02     |  |  |  |

## A-3.4 High-Pressure Core Spray Generator (HPCS)

### A-3.4.1 Component Description

The high-pressure core spray generator (HPCS or HCS) boundary includes the engine, generator, circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for HPCS are listed in Table 58.

### A-3.4.2 Data Collection and Review

Data for HPCS UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS.

The systems included in the HPCS data collection are listed in Table 66 with the number of components included with each system. Table 66 summarizes the data obtained from the plant and used in the HPCS analysis.

|         |         | Ľ        | Data       | Counts     | 5      | Percent with Failures |        |  |
|---------|---------|----------|------------|------------|--------|-----------------------|--------|--|
| Pooling | Failure |          | Demands or |            |        |                       |        |  |
| Group   | Mode    | Failures | Hours      | Components | Plants | Components            | Plants |  |
| HCS     | FTS     | 4        | 2,114 d    | 8          | 8      | 37.5%                 | 37.5%  |  |
| HCS     | FTR     | 3        | 4,196 h    | 8          | 8      | 37.5%                 | 37.5%  |  |

Table 66. HPCS unreliability data.

#### A-3.4.3 Industry-Average Baselines

Table 67 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

Table 67. Selected industry distributions of p and  $\lambda$  for HPCSs.

|         |         | Analysis |          |          |          |          |       | Distribut | tion     |
|---------|---------|----------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling | Failure | Type /   |          |          |          |          |       |           |          |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| HCS     | FTS     | JNID/IL  | 7.87E-04 | 1.97E-03 | 2.13E-03 | 4.00E-03 | Beta  | 4.50      | 2.11E+03 |
| HCS     | FTR     | JNID/IL  | 2.58E-04 | 7.55E-04 | 8.34E-04 | 1.67E-03 | Gamma | 3.50      | 4.20E+03 |

## A-3.5 Station Blackout Generator (SBO)

### A-3.5.1 Component Description

The station blackout generator (SBO) boundary includes the engine, exhaust, generator, circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for SBO are listed in Table 58.

#### A-3.5.2 Data Collection and Review

Data for SBO UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS.

The systems included in the SBO data collection are listed in Table 68, with the number of components included with each system. Table 68 summarizes the data obtained from the plant and used in the SBO analysis.

| Table 68. SB | O unreliabilit | y data.  |            |            |        |                       |        |  |
|--------------|----------------|----------|------------|------------|--------|-----------------------|--------|--|
|              |                | D        | ata        | Counts     | 5      | Percent with Failures |        |  |
| Pooling      | Failure        |          | Demands or |            |        |                       |        |  |
| Group        | Mode           | Failures | Hours      | Components | Plants | Components            | Plants |  |
| SBO          | FTS            | 14       | 625 d      | 5          | 5      | 80.0%                 | 80.0%  |  |
| SBO          | FTR            | 2        | 2,204 h    | 5          | 5      | 40.0%                 | 40.0%  |  |

#### A-3.5.3 Industry-Average Baselines

Table 69 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

| Table 60   | Salactad | industry | distributions | of n | and $\lambda$ for SBOs. |
|------------|----------|----------|---------------|------|-------------------------|
| 1 able 09. | Selected | mausury  | distributions | or p | and $\lambda$ for SDUS. |

|         |         | Analysis |          |          |          |          | Distribut | ion  |          |
|---------|---------|----------|----------|----------|----------|----------|-----------|------|----------|
| Pooling | Failure | Type /   |          |          |          |          |           |      |          |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре      | α    | β        |
| SBO     | FTS     | EB/PL/KS | 1.46E-03 | 2.06E-02 | 2.94E-02 | 8.75E-02 | Beta      | 0.98 | 3.22E+01 |
| SBO     | FTR     | JNID/IL  | 2.60E-04 | 9.89E-04 | 1.13E-03 | 2.52E-03 | Gamma     | 2.50 | 2.20E+03 |

### A-4. RELIEF VALVES

The relief valves (RVs) presented in this section include the boiling-water reactor dual-acting relief valves (SRVs), the PWR power-operated relief valves (PORV) that are on the pressurizer and on the steam generators, and the code safety valves (SVV) that are on both the pressurizer and the steam generators. The failure modes for relief valves are listed in Table 70.

| <b>Pooling Group</b> | Failure Mode | Parameter | Units | Description                        |
|----------------------|--------------|-----------|-------|------------------------------------|
| All                  | FTO          | р         | -     | Fail to open                       |
|                      | FTC          | р         | -     | Fail to close                      |
|                      | SOP          | λ         | 1/h   | Spurious opening                   |
|                      | FTCL         | p         | -     | Fail to close after passing liquid |

Table 70. Relief valve failure modes.

## A-4.1 Safety Relief Valve (SRV)

#### A-4.1.1 Component Description

The safety relief valve (SRV) component boundary includes the valve, the valve operator, and local instrumentation and control circuitry. The SRV lifts either by system pressure directly acting on the valve operator or by an electronic signal to the pilot valve. These are known as dual acting relief valves. The failure modes for SRV are listed in Table 70.

#### A-4.1.2 Data Collection and Review

Data for most SRV UR baselines were obtained either from the updated RV report for NUREG/CR-7037 [A-4] for the FTO and FTC failure modes, or from IRIS database, covering 2006–2020 using RADS, for the spurious operation and leakage failure modes. The systems included in the SRV data collection are listed in Table 71 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                  |        | Num     | ber of Compone | ents  |  |
|---------|------------------|--------|---------|----------------|-------|--|
|         |                  |        | High/   |                |       |  |
| Pooling |                  |        | Unknown | Low            |       |  |
| Group   |                  | System | Demand  | Demand         | Total |  |
| All     | Main steam (MSS) |        | 169     | 409            | 578   |  |
|         | Grand Total      |        | 169     | 409            | 578   |  |

Table 71. SRV systems

Table 72 summarizes the data used in the SRV analysis. Note that the hours for SOP, ELS, and ILS are reactor-year hours.

|                  |                 | ]      | Data                       | Counts | ;      | Percent with Failures |        |  |
|------------------|-----------------|--------|----------------------------|--------|--------|-----------------------|--------|--|
| Pooling<br>Group | Failure<br>Mode | Events | Demands or<br>Events Hours |        | Plants | Components            | Plants |  |
| -                | FTO             | 7      | 3,548 d                    |        |        |                       |        |  |
| -                | FTC             | 0      | 3,548 d                    |        |        |                       |        |  |
| -                | FC              | 0      | 61,005,550 h               | 519    | 34     | 0.0%                  | 0.0%   |  |

Table 72. SRV unreliability data.

|         |         | ]          | Data         | Counts     |        | Percent with | Percent with Failures |  |
|---------|---------|------------|--------------|------------|--------|--------------|-----------------------|--|
| Pooling | Failure | Demands or |              |            |        |              |                       |  |
| Group   | Mode    | Events     | Hours        | Components | Plants | Components   | Plants                |  |
| -       | SOP     | 4          | 61,005,550 h | 519        | 34     | 0.8%         | 8.8%                  |  |
| -       | ILS     | 23         | 61,005,550 h | 519        | 34     | 3.9%         | 32.4%                 |  |
| -       | ILL     |            |              | 519        | 34     |              |                       |  |
| -       | ELS     | 0          | 61,005,550 h | 519        | 34     | 0.0%         | 0.0%                  |  |
| -       | ELL     |            |              | 519        | 34     |              |                       |  |

#### A-4.1.3 Industry-Average Baselines

Table 73 lists the selected industry distributions of p and  $\lambda$  for the SRV failure modes. These industry-average failure rates do not account for any recovery.

The FTCL failure mode is not supported by EPIX data. The selected distribution was generated by reviewing the FTC data in WSRC. To approximate the FTCL, the highest 95<sup>th</sup> percentiles for FTC were identified from that source. The highest values were approximately 1.0E-01. The mean for FTCL was assumed to be 1.0E-01. An  $\alpha$  of 0.5 was also assumed.

Table 73. Selected industry distributions of p and  $\lambda$  for SRVs.

|                  |                 | Analysis         |          |          |          |          |       | Distributio | n        |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-------------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α           | ß        |
| Group            | FTO             | JNID             | 1.02E-03 | 2.02E-03 | 2.11E-03 | 3.52E-03 | Beta  | JNID        | 1.02E-03 |
| -                |                 |                  |          |          |          |          |       |             |          |
| -                | FTC             | CNID             | 5.54E-07 | 6.41E-05 | 1.41E-04 | 5.41E-04 | Beta  | CNID        | 5.54E-07 |
| -                | FC              | JNID/IL          | 3.22E-11 | 3.73E-09 | 8.20E-09 | 3.15E-08 | Gamma | JNID/IL     | 3.22E-11 |
| -                | SOP             | JNID/IL          | 2.73E-08 | 6.84E-08 | 7.38E-08 | 1.39E-07 | Gamma | JNID/IL     | 2.73E-08 |
| -                | ILS             | JNID/IL          | 2.64E-07 | 3.80E-07 | 3.85E-07 | 5.25E-07 | Gamma | JNID/IL     | 2.64E-07 |
| -                | ILL             |                  | 8.24E-13 | 1.88E-09 | 7.70E-09 | 3.52E-08 | Gamma |             | 8.24E-13 |
| -                | ELS             | JNID/IL          | 3.22E-11 | 3.73E-09 | 8.20E-09 | 3.15E-08 | Gamma | JNID/IL     | 3.22E-11 |
| -                | ELL             |                  | 6.14E-14 | 1.40E-10 | 5.74E-10 | 2.63E-09 | Gamma |             | 6.14E-14 |

### A-4.2 Safety Valve (SVV)

#### A-4.2.1 Component Description

The safety valve (SVV) component boundary includes the valve and the valve operator. The SVV is a direct-acting relief valve. These relief valves are also known as 'Code Safeties' since their lift points are the highest and are meant to protect the piping integrity. The failure modes for SVV are listed in Table 70.

#### A-4.2.2 Data Collection and Review

Data for SVV UR baselines were obtained either from the updated RV report for NUREG/CR-7037 for the FTO and FTC failure modes, or from IRIS database, covering 2006–2020 using RADS, for the spurious operation and leakage failure modes. The systems included in the SVV data collection are listed in Table 74 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|                       | Num                                       | ber of Componer                                                        | nts                                                                          |
|-----------------------|-------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                       | High/                                     | _                                                                      |                                                                              |
|                       | Unknown                                   | Low                                                                    |                                                                              |
| System                | Demand                                    | Demand                                                                 | Total                                                                        |
| Main steam (MSS)      | 410                                       | 804                                                                    | 1214                                                                         |
| Reactor coolant (RCS) | 74                                        | 147                                                                    | 221                                                                          |
| Grand Total           | 484                                       | 951                                                                    | 1435                                                                         |
|                       | Main steam (MSS)<br>Reactor coolant (RCS) | High/<br>UnknownSystemDemandMain steam (MSS)410Reactor coolant (RCS)74 | UnknownLowSystemDemandDemandMain steam (MSS)410804Reactor coolant (RCS)74147 |

Table 74. SVV systems.

The SVV data set obtained from RADS was further reduced to include only those SVVs with 20 or fewer demands/year. See Section A.1 in NUREG/CR-6928 for a discussion concerning this decision to limit the component populations for valves. Table 75 summarizes the data used in the SVV analysis. The FTCL failure mode is not supported with EPIX data. Note that the hours for SOP, ELS, and ILS are reactor-year hours.

|         |         | Data   |               | Counts     | 5      | <b>Percent with Failures</b> |        |
|---------|---------|--------|---------------|------------|--------|------------------------------|--------|
| Pooling | Failure |        | Demands or    |            |        |                              |        |
| Group   | Mode    | Events | Hours         | Components | Plants | Components                   | Plants |
|         | SOP     | 1      | 171,647,800 h | 1,380      | 81     | 0.1%                         | 1.2%   |
|         | ILS     | 5      | 171,647,800 h | 1,380      | 81     | 0.4%                         | 6.2%   |
|         | ILL     |        |               | 1,380      | 81     |                              |        |
|         | ELS     | 1      | 171,647,800 h | 1,380      | 81     | 0.1%                         | 1.2%   |
|         | ELL     |        |               | 1,380      | 81     |                              |        |
| PWR MSS | FTO     | 0      | 745 d         |            |        |                              |        |
| PWR MSS | FTC     | 4      | 745 d         |            |        |                              |        |
| PWR MSS | SOP     | 0      | 140,068,800 h | 1,109      | 66     | 0.0%                         | 0.0%   |
| PWR RCS | FTO     | 0      | 4 d           |            |        |                              |        |
| PWR RCS | FTC     | 2      | 4 d           |            |        |                              |        |
| PWR RCS | SOP     | 1      | 23,893,310 h  | 207        | 70     | 0.5%                         | 1.4%   |

#### Table 75. SVV unreliability data.

### A-4.2.3 Industry-Average Baselines

Table 76 lists the selected industry distributions of p and  $\lambda$  for the SVV failure modes. These industry-average failure rates do not account for any recovery.

|         |         | Analysis |          |          |          |          | I     | Distribution |          |  |
|---------|---------|----------|----------|----------|----------|----------|-------|--------------|----------|--|
| Pooling | Failure | Type /   |          |          |          |          |       |              |          |  |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α            | β        |  |
|         | SOP     | JNID/IL  | 1.02E-09 | 6.88E-09 | 8.74E-09 | 2.27E-08 | Gamma | 1.50         | 1.72E+08 |  |
|         | ILS     | JNID/IL  | 1.33E-08 | 3.01E-08 | 3.20E-08 | 5.72E-08 | Gamma | 5.50         | 1.72E+08 |  |
|         | ILL     |          | 6.85E-14 | 1.56E-10 | 6.40E-10 | 2.93E-09 | Gamma | 0.30         | 4.69E+08 |  |
|         | ELS     | JNID/IL  | 1.02E-09 | 6.88E-09 | 8.74E-09 | 2.27E-08 | Gamma | 1.50         | 1.72E+08 |  |
|         | ELL     |          | 6.55E-14 | 1.49E-10 | 6.12E-10 | 2.80E-09 | Gamma | 0.30         | 4.90E+08 |  |
| PWR MSS | FTO     | CNID     | 2.61E-06 | 3.05E-04 | 6.70E-04 | 2.58E-03 | Beta  | 0.50         | 7.44E+02 |  |
| PWR MSS | FTC     | JNID     | 2.23E-03 | 5.60E-03 | 6.03E-03 | 1.13E-02 | Beta  | 4.50         | 7.42E+02 |  |
| PWR MSS | SOP     | JNID/IL  | 1.40E-11 | 1.62E-09 | 3.57E-09 | 1.37E-08 | Gamma | 0.50         | 1.40E+08 |  |
| PWR RCS | FTO     | Bayes    | 2.58E-06 | 3.01E-04 | 6.63E-04 | 2.55E-03 | Beta  | 0.50         | 7.52E+02 |  |
| PWR RCS | FTC     | Bayes    | 9.65E-03 | 3.63E-02 | 4.13E-02 | 9.01E-02 | Beta  | 2.49         | 5.77E+01 |  |
| PWR RCS | SOP     | JNID/IL  | 7.36E-09 | 4.95E-08 | 6.28E-08 | 1.63E-07 | Gamma | 1.50         | 2.39E+07 |  |

Table 76. Selected industry distributions of p and  $\lambda$  for SVVs.

## A-4.3 Power-Operated Relief Valve (PORV)

### A-4.3.1 Component Description

The power-operated relief valve (PORV) component boundary includes the valve, the valve operator, local circuit breaker, and local instrumentation and control circuitry. The failure modes for PORV are listed in Table 70.

### A-4.3.2 Data Collection and Review

Data for PORV UR baselines were obtained either from the updated RV report for NUREG/CR-7037 for the FTO and FTC failure modes, or from IRIS database, covering 2006–2020 using RADS, for the spurious operation and leakage failure modes. The systems included in the PORV data collection are listed in Table 78 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                       | Num     | ber of Compone | nts   |
|---------|-----------------------|---------|----------------|-------|
|         |                       | High/   | _              |       |
| Pooling |                       | Unknown | Low            |       |
| Group   | System                | Demand  | Demand         | Total |
| All     | Main steam (MSS)      | 169     | 126            | 295   |
|         | Reactor coolant (RCS) | 9       | 120            | 129   |
|         | Grand Total           | 178     | 246            | 424   |

Table 77. PORV systems.

Table 78 summarizes the data used in the PORV analysis. Note that the hours for FC, SOP, ELS, and ILS are reactor-year hours.

|         |         | ]      | Data         | Counts     | 5      | <b>Percent with Failures</b> |        |
|---------|---------|--------|--------------|------------|--------|------------------------------|--------|
| Pooling | Failure |        | Demands or   |            |        |                              |        |
| Group   | Mode    | Events | Hours        | Components | Plants | Components                   | Plants |
| RCS     | FTO     | 4      | 377 d        |            |        |                              |        |
| RCS     | FTC     | 1      | 377 d        |            |        |                              |        |
| MSS     | FTO     | 25     | 1,580 d      |            |        |                              |        |
| MSS     | FTC     | 7      | 1,580 d      |            |        |                              |        |
| MSS     | FC      | 7      | 278 d        |            |        |                              |        |
|         | SOP     | 13     | 57,223,460 h | 454        | 72     | 2.4%                         | 13.9%  |
|         | ILS     | 3      | 57,223,460 h | 454        | 72     | 0.7%                         | 4.2%   |
|         | ILL     |        |              | 454        | 72     |                              |        |
|         | ELS     | 0      | 57,223,460 h | 454        | 72     | 0.0%                         | 0.0%   |
|         | ELL     |        |              | 454        | 72     |                              |        |

Table 78. PORV unreliability data.

#### A-4.3.3 Industry-Average Baselines

Table 79 lists the selected industry distributions of p and  $\lambda$  for the PORV failure modes. These industry-average failure rates do not account for any recovery.

|                        |                 | Analysis         |          |          |          |          | I     | Distributi | ion      |
|------------------------|-----------------|------------------|----------|----------|----------|----------|-------|------------|----------|
| Pooling<br>Group       | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α          | β        |
| RCS                    | FTO             | JNID             | 4.42E-03 | 1.11E-02 | 1.19E-02 | 2.23E-02 | Beta  | 4.50       | 3.74E+02 |
| RCS                    | FTC             | CNID             | 1.47E-05 | 1.79E-03 | 3.97E-03 | 1.53E-02 | Beta  | 0.49       | 1.24E+02 |
| MSS                    | FTO             | JNID             | 1.13E-02 | 1.59E-02 | 1.61E-02 | 2.17E-02 | Beta  | 25.50      | 1.56E+03 |
| MSS                    | FTC             | EB               | 2.54E-04 | 3.08E-03 | 4.35E-03 | 1.28E-02 | Beta  | 1.05       | 2.41E+02 |
| MSS                    | FC              | JNID             | 1.31E-02 | 2.58E-02 | 2.69E-02 | 4.45E-02 | Beta  | 7.50       | 2.72E+02 |
|                        | SOP             | JNID/IL          | 1.41E-07 | 2.30E-07 | 2.36E-07 | 3.51E-07 | Gamma | 13.50      | 5.72E+07 |
|                        | ILS             | JNID/IL          | 1.89E-08 | 5.55E-08 | 6.12E-08 | 1.23E-07 | Gamma | 3.50       | 5.72E+07 |
|                        | ILL             |                  | 1.31E-13 | 2.98E-10 | 1.22E-09 | 5.60E-09 | Gamma | 0.30       | 2.45E+08 |
|                        | ELS             | JNID/IL          | 3.44E-11 | 3.98E-09 | 8.74E-09 | 3.36E-08 | Gamma | 0.50       | 5.72E+07 |
|                        | ELL             |                  | 6.55E-14 | 1.49E-10 | 6.12E-10 | 2.80E-09 | Gamma | 0.30       | 4.90E+08 |
| LOOD                   |                 | Point            | -        | -        | 9.23E-02 | -        |       | -          | -        |
| LOOP <sup>a</sup>      |                 | Estimate         |          |          |          |          |       |            |          |
| T                      |                 | Point            | -        | -        | 2.28E-02 | -        |       | -          | -        |
| Transient <sup>a</sup> |                 | Estimate         |          |          |          |          |       |            |          |

a. Updated RV Report, Table 13.

### A-4.4 Low-Capacity Relief Valve (RVL)

#### A-4.4.1 Component Description

The low-capacity relief valve (RVL) component boundary includes the valve, and the valve operator. The failure modes for RVLs are listed in Table 70.

#### A-4.4.2 Data Collection and Review

Data for RVL UR baselines were obtained either from the updated RV report for NUREG/CR-7037 for the FTO and FTC failure modes, or from IRIS database, covering 2006–2020 using RADS, for the spurious operation and leakage failure modes. The systems included in the RVL data collection are listed in Table 80 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                                            | Num     | ber of Compone | nts   |  |
|---------|--------------------------------------------|---------|----------------|-------|--|
|         |                                            | High/   | -              |       |  |
| Pooling |                                            | Unknown | Low            |       |  |
| Group   | System                                     | Demand  | Demand         | Total |  |
| All     | Auxiliary feedwater (AFW)                  | 1       |                | 1     |  |
|         | Chemical and volume control (CVC)          | 20      | 2              | 22    |  |
|         | Component cooling water (CCW)              | 21      | 1              | 22    |  |
|         | Containment spray recirculation (CSR)      | 3       |                | 3     |  |
|         | High pressure injection (HPI)              | 1       |                | 1     |  |
|         | Low pressure core spray (LCS)              |         | 1              | 1     |  |
|         | Normally operating service water (SWN)     | 10      |                | 10    |  |
|         | Reactor core isolation (RCI)               | 1       |                | 1     |  |
|         | Residual Heat Removal (LCI in BWRs, LPI in | 12      | 6              | 18    |  |
|         | PWRs) (RHR)                                |         |                |       |  |
|         | Standby liquid control (SLC)               | 2       | 3              | 5     |  |
|         | Standby service water (SSW)                | 3       |                | 3     |  |
|         | Grand Total                                | 74      | 13             | 87    |  |

Table 80. RVL systems.

Table 81 summarizes the data used in the RVL analysis. Note that the hours for SOP, ELS, and ILS are reactor-year hours.

| Pooling | Failure | I      | Data<br>Demands or |            | ;      | Percent with Failures |        |  |
|---------|---------|--------|--------------------|------------|--------|-----------------------|--------|--|
| Group   | Mode    | Events | Hours              | Components | Plants | Components            | Plants |  |
| -       | FTO     | 0      | 65 d               | 12         | 6      | 0.0%                  | 0.0%   |  |
| -       | FTC     | 0      | 65 d               | 12         | 6      | 0.0%                  | 0.0%   |  |
| -       | SOP     | 0      | 9,165,162 h        | 79         | 30     | 0.0%                  | 0.0%   |  |
| -       | ILS     | 3      | 9,165,162 h        | 79         | 30     | 3.8%                  | 10.0%  |  |
| -       | ILL     |        |                    | 79         | 30     |                       |        |  |
| -       | ELS     | 3      | 9,165,162 h        | 79         | 30     | 3.8%                  | 10.0%  |  |
| -       | ELL     |        |                    | 79         | 30     |                       |        |  |

#### Table 81. RVL unreliability data.

### A-4.4.3 Industry-Average Baselines

Table 82 lists the selected industry distributions of p and  $\lambda$  for the RVL failure modes. These industry-average failure rates do not account for any recovery.

| Analysis         |                 |                  |          |          |          |          | Ľ     | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| -                | FTO             | JNID/IL          | 3.02E-05 | 3.49E-03 | 7.59E-03 | 2.91E-02 | Beta  | 0.50      | 6.54E+01 |
| -                | FTC             | JNID/IL          | 3.02E-05 | 3.49E-03 | 7.59E-03 | 2.91E-02 | Beta  | 0.50      | 6.54E+01 |
| -                | SOP             | JNID/IL          | 2.14E-10 | 2.48E-08 | 5.46E-08 | 2.09E-07 | Gamma | 0.50      | 9.17E+06 |
| -                | ILS             | JNID/IL          | 1.18E-07 | 3.46E-07 | 3.82E-07 | 7.67E-07 | Gamma | 3.50      | 9.17E+06 |
| -                | ILL             |                  | 8.18E-13 | 1.86E-09 | 7.64E-09 | 3.49E-08 | Gamma | 0.30      | 3.93E+07 |
| -                | ELS             | JNID/IL          | 1.18E-07 | 3.46E-07 | 3.82E-07 | 7.67E-07 | Gamma | 3.50      | 9.17E+06 |
| -                | ELL             |                  | 2.86E-12 | 6.52E-09 | 2.67E-08 | 1.22E-07 | Gamma | 0.30      | 1.12E+07 |

Table 82. Selected industry distributions of p and  $\lambda$  for RVLs.

### A-5. ELECTRICAL EQUIPMENT

This section provides reliability estimates of various electrical equipment used in probabilistic risk assessment. The failure modes applicable to electrical equipment are listed in Table 83.

| <b>Pooling Group</b> | Failure Mode | Parameter | Units | Description                         |
|----------------------|--------------|-----------|-------|-------------------------------------|
| All                  | FTOC         | р         | -     | Failure to open or failure to close |
|                      | SOP          | λ         | 1/h   | Spurious operation                  |
|                      | FTOP         | λ         | 1/h   | Fail to operate                     |
|                      | FF           | p         | -     | Failure to function on demand       |

Table 83. Electrical equipment failure modes.

## A-5.1 Battery Charger (BCH)

#### A-5.1.1 Component Description

The battery charger (BCH) boundary includes the battery charger and its breakers. The failure modes for BCHs are listed in Table 83.

#### A-5.1.2 Data Collection and Review

Data for BCH UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the BCH data collection are listed in Table 84 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                                               | Num     | ber of Compone | nts   |
|---------|-----------------------------------------------|---------|----------------|-------|
|         |                                               | High/   | _              |       |
| Pooling |                                               | Unknown | Low            |       |
| Group   | System                                        | Demand  | Demand         | Total |
| All     | dc power (DCP)                                | 755     | 11             | 766   |
|         | Emergency power supply (EPS)                  | 10      |                | 10    |
|         | High pressure core spray (HCS)                | 1       |                | 1     |
|         | Main steam (MSS)                              | 2       |                | 2     |
|         | Offsite electrical power (OEP)                | 4       |                | 4     |
|         | Plant ac power (ACP)                          | 55      |                | 55    |
|         | Uninterruptable instrument power supply (UPS) | 7       |                | 7     |
|         | Grand Total                                   | 834     | 11             | 845   |

Table 84. BCH systems.

Table 85 summarizes the data obtained from EPIX and used in the BCH analysis.

|         |         | Data     |              | Counts     | 5      | Percent with Failures |        |  |
|---------|---------|----------|--------------|------------|--------|-----------------------|--------|--|
| Pooling | Failure |          | Demands or   |            |        |                       |        |  |
| Group   | Mode    | Failures | Hours        | Components | Plants | Components            | Plants |  |
| -       | FTOP    | 161      | 99,754,050 h | 781        | 100    | 16.1%                 | 63.0%  |  |

### A-5.1.3 Industry-Average Baselines

Table 86 lists the industry-average failure rate distribution. This industry-average failure rate does not account for any recovery.

|         |         | Analysis |          |          |          |          | ]     | Distribut | ion      |
|---------|---------|----------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling | Failure | Type /   |          |          |          |          |       |           |          |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| -       | FTOP    | EB/PL/KS | 1.09E-07 | 1.26E-06 | 1.76E-06 | 5.15E-06 | Gamma | 1.08      | 6.12E+05 |

Table 86. Selected industry distributions of p and  $\lambda$  for BCHs.

## A-5.2 Battery (BAT)

### A-5.2.1 Component Description

The battery (BAT) boundary includes the battery cells. The failure modes for BAT are listed in Table 83.

### A-5.2.2 Data Collection and Review

Data for BAT UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the BAT data collection are listed in Table 87 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

#### Table 87. BAT systems.

|         |                                               | Numl    | per of Componer | nts   |
|---------|-----------------------------------------------|---------|-----------------|-------|
|         |                                               | High/   |                 |       |
| Pooling |                                               | Unknown | Low             |       |
| Group   | System                                        | Demand  | Demand          | Total |
| All     | dc power (DCP)                                | 490     | 7               | 497   |
|         | Uninterruptable instrument power supply (UPS) | 6       |                 | 6     |
|         | Grand Total                                   | 496     | 7               | 503   |

Table 88 summarizes the data obtained from EPIX and used in the BAT analysis.

#### Table 88. BAT unreliability data.

| Pooling | Pooling Failure |                     | Data         |            | 5      | Percent with Failures |        |
|---------|-----------------|---------------------|--------------|------------|--------|-----------------------|--------|
| Group   | Mode            | Failures Demands or |              | Components | Plants | Components            | Plants |
|         |                 |                     | Hours        |            |        |                       |        |
| -       | FTOP            | 21                  | 52,018,730 h | 412        | 99     | 4.9%                  | 16.2%  |

#### A-5.2.3 Industry-Average Baselines

Table 89 lists the industry-average failure rate distribution. This industry-average failure rate does not account for any recovery.

Table 89. Selected industry distributions of p and  $\lambda$  for BATs.

|                  | Analysis        |                  |          |          |          |          |       |      | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α    | β        |
| -                | FTOP            | EB/PL/KS         | 4.79E-09 | 2.21E-07 | 4.05E-07 | 1.42E-06 | Gamma | 0.63 | 1.57E+06 |

## A-5.3 Automatic Bus Transfer Switch (ABT)

### A-5.3.1 Component Description

The automatic bus transfer switch (ABT) boundary includes the ABT component itself. The failure modes for ABT are listed in Table 83.

#### A-5.3.2 Data Collection and Review

Data for the ABT UR baseline were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the ABT data collection are listed in Table 90 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

Table 90. ABT systems.

|                                               | Num                                                                                                                     | ber of Componer                                                                                                                          | nts                                                                                                                                    |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|                                               | High/                                                                                                                   |                                                                                                                                          |                                                                                                                                        |
|                                               | Unknown                                                                                                                 | Low                                                                                                                                      |                                                                                                                                        |
| System                                        | Demand                                                                                                                  | Demand                                                                                                                                   | Total                                                                                                                                  |
| dc power (DCP)                                |                                                                                                                         | 5                                                                                                                                        | 5                                                                                                                                      |
| Emergency power supply (EPS)                  |                                                                                                                         | 11                                                                                                                                       | 11                                                                                                                                     |
| Plant ac power (ACP)                          | 9                                                                                                                       |                                                                                                                                          | 9                                                                                                                                      |
| Uninterruptable instrument power supply (UPS) |                                                                                                                         | 7                                                                                                                                        | 7                                                                                                                                      |
| Grand Total                                   | 9                                                                                                                       | 23                                                                                                                                       | 32                                                                                                                                     |
|                                               | dc power (DCP)<br>Emergency power supply (EPS)<br>Plant ac power (ACP)<br>Uninterruptable instrument power supply (UPS) | High/<br>UnknownSystemDemanddc power (DCP)Emergency power supply (EPS)Plant ac power (ACP)9Uninterruptable instrument power supply (UPS) | UnknownLowSystemDemanddc power (DCP)5Emergency power supply (EPS)11Plant ac power (ACP)9Uninterruptable instrument power supply (UPS)7 |

Table 91 summarizes the data obtained from EPIX and used in the ABT analysis.

|         |         | I        | Data        | Counts     | 3      | Percent with Failures |        |  |
|---------|---------|----------|-------------|------------|--------|-----------------------|--------|--|
| Pooling | Failure |          | Demands or  |            |        |                       |        |  |
| Group   | Mode    | Failures | Hours       | Components | Plants | Components            | Plants |  |
| -       | FF      | 4        | 3,377 d     | 27         | 7      | 11.1%                 | 28.6%  |  |
| -       | SOP     | 0        | 4,010,342 h | 32         | 7      | 0.0%                  | 0.0%   |  |

Table 91. ABT unreliability data.

Figure 22 shows the range of ABT demands per year in the ABT data set (limited to low-demand components only).

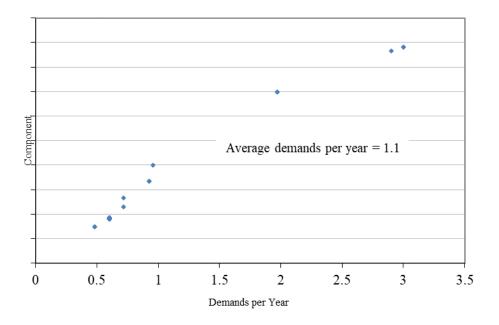



Figure 22. ABT demands per year distribution.

### A-5.3.3 Industry-Average Baselines

Table 92 lists the industry-average failure rate distribution. Note that this distribution is based on zero failures and few demands and may be conservatively high. This industry-average failure rate does not account for any recovery.

Table 92. Selected industry distributions of p and  $\lambda$  for ABTs.

|                  |                 | Analysis         |          |          |          |          |       | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| -                | FF              | JNID/IL          | 4.93E-04 | 1.24E-03 | 1.33E-03 | 2.51E-03 | Beta  | 4.50      | 3.37E+03 |
| -                | SOP             | JNID/IL          | 4.90E-10 | 5.67E-08 | 1.25E-07 | 4.79E-07 | Gamma | 0.50      | 4.01E+06 |

### A-5.4 Circuit Breaker (CRB)

#### A-5.4.1 Component Description

The circuit breaker (CRB) is defined as the breaker itself and local instrumentation and control circuitry. The circuit breaker data presented here is limited to circuit breakers used in the distribution of power. Circuit breakers used to supply power to a specific load are included within that components boundary. External equipment used to monitor under voltage, ground faults, differential faults, and other protection schemes for individual breakers are considered part of the breaker. The failure modes for CRB are listed in Table 83.

#### A-5.4.2 Data Collection and Review

Data for CRB UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the CRB data collection are listed in Table 93 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                                | Number of Components |        |       |  |  |  |
|---------|--------------------------------|----------------------|--------|-------|--|--|--|
|         |                                | High/                |        |       |  |  |  |
| Pooling |                                | Unknown              | Low    |       |  |  |  |
| Group   | System                         | Demand               | Demand | Total |  |  |  |
| ALL     | dc power (DCP)                 | 278                  | 961    | 1239  |  |  |  |
|         | Emergency power supply (EPS)   | 70                   | 190    | 260   |  |  |  |
|         | High pressure core spray (HCS) | 12                   | 2      | 14    |  |  |  |
|         | Offsite electrical power (OEP) | 32                   | 121    | 153   |  |  |  |
|         | Plant ac power (ACP)           | 952                  | 3324   | 4276  |  |  |  |
|         | Reactor protection (RPS)       | 133                  | 223    | 356   |  |  |  |
|         | Grand Total                    | 1477                 | 4821   | 6298  |  |  |  |

Table 93. CRB systems.

Table 94 summarizes the data used in the CRB analysis. Note that the hours for SOP are reactor-year hours.

| Table 94. | CRB | unreliability | data. |
|-----------|-----|---------------|-------|
|-----------|-----|---------------|-------|

|              |         | Data   |               | Counts     |        | Percent with Failures |        |
|--------------|---------|--------|---------------|------------|--------|-----------------------|--------|
| Pooling      | Failure |        | Demands or    |            |        |                       |        |
| Group        | Mode    | Events | Hours         | Components | Plants | Components            | Plants |
|              | FTOC    | 102    | 119,027 d     | 3,461      | 102    | 2.6%                  | 53.9%  |
|              | SOP     | 57     | 552,883,300 h | 4,620      | 102    | 1.1%                  | 37.3%  |
| HV (13.8 and | FTOC    | 17     | 9,198 d       | 244        | 40     | 5.3%                  | 25.0%  |
| 16 kV)       |         |        |               |            |        |                       |        |
| HV (13.8 and | SOP     | 14     | 37,600,840 h  | 300        | 58     | 4.3%                  | 20.7%  |
| 16 kV)       |         |        |               |            |        |                       |        |
| MV (4.16 and | FTOC    | 57     | 50,897 d      | 1,080      | 85     | 4.6%                  | 44.7%  |
| 6.9 kV)      |         |        |               |            |        |                       |        |
| MV (4.16 and | SOP     | 15     | 149,457,800 h | 1,240      | 91     | 1.0%                  | 13.2%  |
| 6.9 kV)      |         |        |               |            |        |                       |        |
| LV (480 V)   | FTOC    | 25     | 46,176 d      | 1,752      | 81     | 1.4%                  | 22.2%  |

|                  |                 | Data                       |               | Counts     |        | <b>Percent with Failures</b> |        |  |
|------------------|-----------------|----------------------------|---------------|------------|--------|------------------------------|--------|--|
| Pooling<br>Group | Failure<br>Mode | Demands or<br>Events Hours |               | Components | Plants | Components                   | Plants |  |
| LV (480 V)       | SOP             | 27                         | 310,690,800 h | 2,630      | 91     | 1.0%                         | 23.1%  |  |
| DC               | FTOC            | 5                          | 17,566 d      | 602        | 47     | 0.8%                         | 8.5%   |  |
| DC               | SOP             | 0                          | 34,938,600 h  | 270        | 31     | 0.0%                         | 0.0%   |  |

Figure 23 shows the range of breaker demands per year in the CRB data set (limited to low-demand components only).

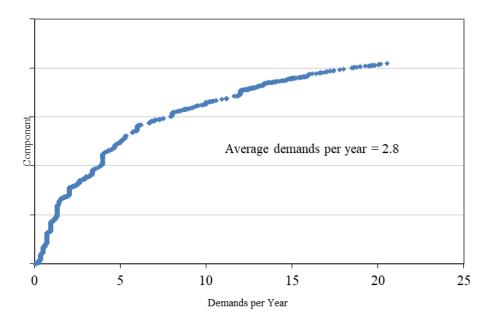



Figure 23. CRB demands per year distribution.

#### A-5.4.3 Industry-Average Baselines

Table 95 lists the selected industry distributions of p and  $\lambda$  for the CRB failure modes. These industry-average failure rates do not account for any recovery.

|             |         | Analysis |          |          |          |          | Distribution |       |          |
|-------------|---------|----------|----------|----------|----------|----------|--------------|-------|----------|
| Pooling     | Failure | Туре /   |          |          |          |          |              |       |          |
| Group       | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре         | α     | β        |
|             | FTOC    | EB/PL/KS | 4.23E-05 | 9.91E-04 | 1.59E-03 | 5.16E-03 | Beta         | 0.79  | 4.99E+02 |
|             | SOP     | EB/PL/KS | 4.58E-10 | 7.38E-08 | 1.73E-07 | 6.84E-07 | Gamma        | 0.47  | 2.68E+06 |
| HV (13.8    | FTOC    | JNID/IL  | 1.22E-03 | 1.87E-03 | 1.90E-03 | 2.71E-03 | Beta         | 17.50 | 9.18E+03 |
| and 16 kV)  |         |          |          |          |          |          |              |       |          |
| HV (13.8    | SOP     | JNID/IL  | 2.35E-07 | 3.77E-07 | 3.86E-07 | 5.66E-07 | Gamma        | 14.50 | 3.76E+07 |
| and 16 kV)  |         |          |          |          |          |          |              |       |          |
| MV (4.16    | FTOC    | EB/PL/KS | 7.09E-06 | 1.13E-03 | 2.64E-03 | 1.04E-02 | Beta         | 0.47  | 1.76E+02 |
| and 6.9 kV) |         |          |          |          |          |          |              |       |          |
| MV (4.16    | SOP     | JNID/IL  | 6.47E-08 | 1.02E-07 | 1.04E-07 | 1.51E-07 | Gamma        | 15.50 | 1.49E+08 |
| and 6.9 kV) |         |          |          |          |          |          |              |       |          |
| LV (480V)   | FTOC    | EB/PL/KS | 3.27E-06 | 3.89E-04 | 8.57E-04 | 3.30E-03 | Beta         | 0.50  | 5.79E+02 |
| LV (480V)   | FIOC    | EB/PL/KS | 3.27E-06 | 3.89E-04 | 8.3/E-04 | 3.30E-03 | веtа         | 0.50  | 5.79E+02 |

Table 95. Selected industry distributions of p and  $\lambda$  for CRBs.

|                  |                 | Analysis         |          |          |          |          | Distribution |       |          |  |
|------------------|-----------------|------------------|----------|----------|----------|----------|--------------|-------|----------|--|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре         | α     | β        |  |
| LV (480V)        | SOP             | JNID/IL          | 6.26E-08 | 8.74E-08 | 8.85E-08 | 1.18E-07 | Gamma        | 27.50 | 3.11E+08 |  |
| DC               | FTOC            | JNID/IL          | 1.30E-04 | 2.94E-04 | 3.13E-04 | 5.59E-04 | Beta         | 5.50  | 1.76E+04 |  |
| DC               | SOP             | JNID/IL          | 5.63E-11 | 6.52E-09 | 1.43E-08 | 5.50E-08 | Gamma        | 0.50  | 3.49E+07 |  |

### A-5.5 Inverter (INV)

#### A-5.5.1 Component Description

The inverter (INV) boundary includes the inverter unit. The failure modes for INV are listed in Table 83.

#### A-5.5.2 Data Collection and Review

Data for INV UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the INV data collection are listed in Table 96 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

.....

#### Table 96. INV systems.

|         |                                               | Num     | ber of Compon | ents  |
|---------|-----------------------------------------------|---------|---------------|-------|
|         |                                               | High/   |               |       |
| Pooling |                                               | Unknown | Low           |       |
| Group   | System                                        | Demand  | Demand        | Total |
| All     | Auxiliary feedwater (AFW)                     | 2       |               | 2     |
|         | dc power (DCP)                                | 14      |               | 14    |
|         | Emergency power supply (EPS)                  | 2       |               | 2     |
|         | High pressure coolant injection (HCI)         | 1       |               | 1     |
|         | Normally operating service water (SWN)        | 2       |               | 2     |
|         | Plant ac power (ACP)                          | 22      |               | 22    |
|         | Reactor core isolation (RCI)                  | 3       |               | 3     |
|         | Reactor protection (RPS)                      | 22      |               | 22    |
|         | Residual Heat Removal (LCI in BWRs, LPI in    | 6       |               | 6     |
|         | PWRs) (RHR)                                   |         |               |       |
|         | Uninterruptable instrument power supply (UPS) | 154     |               | 154   |
|         | Grand Total                                   | 228     |               | 228   |

Table 97 summarizes the data obtained from EPIX and used in the INV analysis. Note that the hours are reactor-year hours.

Table 97. INV unreliability data.

|         |         |        | Data         | Counts     |        | <b>Percent with Failures</b> |        |
|---------|---------|--------|--------------|------------|--------|------------------------------|--------|
| Pooling | Failure |        | Demands or   |            |        |                              |        |
| Group   | Mode    | Events | Hours        | Components | Plants | Components                   | Plants |
| -       | FTOP    | 52     | 24,269,470 h | 199        | 37     | 17.6%                        | 67.6%  |

#### A-5.5.3 Industry-Average Baselines

Table 98 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

Table 98. Selected industry distributions of p and  $\lambda$  for INVs.

|                  |                 | Analysis         |          |          |          |          | ]     | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| -                | FTOP            | EB/PL/KS         | 1.73E-07 | 2.41E-06 | 3.49E-06 | 1.05E-05 | Gamma | 0.99      | 2.82E+05 |

## A-5.6 Bus (BUS)

#### A-5.6.1 Component Description

The bus (BUS) boundary includes the bus component itself, which includes the bus bar, fuses, and control circuitry. Associated circuit breakers and step-down transformers are not included. The failure modes for BUS are listed in Table 83.

#### A-5.6.2 Data Collection and Review

Data for the BUS UR baseline were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the BUS data collection are listed in Table 99 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether SOP (e.g., leakage, spurious operation, and operation).

|         |                      | Num     | ber of Componer | ents  |  |
|---------|----------------------|---------|-----------------|-------|--|
|         |                      | High/   |                 |       |  |
| Pooling |                      | Unknown | Low             |       |  |
| Group   | System               | Demand  | Demand          | Total |  |
| DC      | dc power (DCP)       | 56      |                 | 56    |  |
| AC      | Plant ac power (ACP) | 1225    | 92              | 1317  |  |
|         | Grand Total          | 1281    | 92              | 1373  |  |

Table 99. BUS systems.

Table 100 summarizes the data obtained from EPIX and used in the BUS analysis. Note that the hours are reactor-year hours.

|         |         | Ι          | Data          |            | 5      | <b>Percent with Failures</b> |        |  |
|---------|---------|------------|---------------|------------|--------|------------------------------|--------|--|
| Pooling | Failure | Demands or |               |            |        |                              |        |  |
| Group   | Mode    | Failures   | Hours         | Components | Plants | Components                   | Plants |  |
| AC      | FTOP    | 76         | 160,545,900 h | 1,296      | 87     | 5.2%                         | 43.7%  |  |
| DC      | FTOP    | 1          | 2,103,936 h   | 16         | 6      | 6.3%                         | 16.7%  |  |

Table 100. BUS unreliability data.

#### A-5.6.3 Industry-Average Baselines

Table 101 lists the industry-average failure rate distribution. This industry-average failure rate does not account for any recovery.

|                  |                 | Analysis         |          |          |          |          | Distribution |      |          |  |
|------------------|-----------------|------------------|----------|----------|----------|----------|--------------|------|----------|--|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре         | α    | β        |  |
| AC               | FTOP            | EB/PL/KS         | 2.91E-08 | 4.05E-07 | 5.88E-07 | 1.77E-06 | Gamma        | 0.99 | 1.68E+06 |  |
| DC               | FTOP            | JNID/IL          | 8.38E-08 | 5.63E-07 | 7.13E-07 | 1.86E-06 | Gamma        | 1.50 | 2.10E+06 |  |

Table 101. Selected industry distributions of p and  $\lambda$  for BUSs.

## A-5.7 Motor Control Center (MCC)

### A-5.7.1 Component Description

The motor control center (MCC) component boundary includes the MCC cabinet, the bus bars, fuses, and protection equipment. The failure modes for MCC are listed in Table 83.

### A-5.7.2 Data Collection and Review

The data for MCC UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the MCC data collection are listed in Table 102 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                                               | Num     | ber of Componer | nts   |  |
|---------|-----------------------------------------------|---------|-----------------|-------|--|
|         |                                               | High/   | _               |       |  |
| Pooling |                                               | Unknown | Low             |       |  |
| Group   | System                                        | Demand  | Demand          | Total |  |
| All     | Component cooling water (CCW)                 | 1       |                 | 1     |  |
|         | dc power (DCP)                                | 13      |                 | 13    |  |
|         | Emergency power supply (EPS)                  | 16      |                 | 16    |  |
|         | Plant ac power (ACP)                          | 170     | 3               | 173   |  |
|         | Uninterruptable instrument power supply (UPS) | 12      | 2               | 14    |  |
|         | Grand Total                                   | 212     | 5               | 217   |  |

#### Table 102. MCC systems.

Table 103 summarizes the data used in the MCC analysis.

| Table 103. MCC unreliabil | ity | data |
|---------------------------|-----|------|
|---------------------------|-----|------|

|         |         | Data   |              | Counts     | 6      | Percent with Failures |        |
|---------|---------|--------|--------------|------------|--------|-----------------------|--------|
| Pooling | Failure |        | Demands or   |            |        |                       |        |
| Group   | Mode    | Events | Hours        | Components | Plants | Components            | Plants |
| -       | FTOP    | 7      | 28,535,130 h | 217        | 18     | 2.3%                  | 22.2%  |

#### A-5.7.3 Industry-Average Baselines

Table 104 lists the selected industry distributions of p and  $\lambda$  for the MCC failure modes. These industry-average failure rates do not account for any recovery.

Table 104. Selected industry distributions of p and  $\lambda$  for MCCs.

|                  | Analysis        |                  |          |          |          |          | Ľ     | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| -                | FTOP            | EB/PL/KS         | 1.31E-08 | 1.70E-07 | 2.43E-07 | 7.24E-07 | Gamma | 1.02      | 4.19E+06 |

### A-5.8 Transformer (TFM)

#### A-5.8.1 Component Description

The transformer (TFM) boundary includes the transformer unit, which includes the wiring, cooling, and protection equipment. The failure modes for TFM are listed in Table 83.

#### A-5.8.2 Data Collection and Review

Data for TFM UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the TFM data collection are listed in Table 105 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|                  |                                | Num               | ber of Compone | Components |  |  |
|------------------|--------------------------------|-------------------|----------------|------------|--|--|
|                  |                                | High/             | _              |            |  |  |
| Pooling<br>Group | System                         | Unknown<br>Demand | Low<br>Demand  | Total      |  |  |
| <b>±</b>         | 5                              | Demanu            | Demanu         | Total      |  |  |
| All              | Control rod drive (CRD)        | 6                 |                | 6          |  |  |
|                  | dc power (DCP)                 | 412               | 2              | 414        |  |  |
|                  | Emergency power supply (EPS)   | 1                 |                | 1          |  |  |
|                  | Offsite electrical power (OEP) | 8                 |                | 8          |  |  |
|                  | Plant ac power (ACP)           | 4793              | 42             | 4835       |  |  |
|                  | Grand Total                    | 5220              | 44             | 5264       |  |  |

Table 105. TFM systems.

Table 106 summarizes the data obtained from EPIX and used in the TFM analysis. Note that the hours are reactor-year hours.

Table 106. TFM unreliability data.

|         |         | ]        | Data         | Counts     | Counts |            | <b>Percent with Failures</b> |  |
|---------|---------|----------|--------------|------------|--------|------------|------------------------------|--|
| Pooling | Failure |          | Demands or   |            |        |            |                              |  |
| Group   | Mode    | Failures | Hours        | Components | Plants | Components | Plants                       |  |
| >15kV   | FTOP    | 110      | 60,181,620 h | 512        | 99     | 17.2%      | 53.5%                        |  |

#### A-5.8.3 Industry-Average Baselines

Table 107 lists the industry-average failure rate distributions. This industry-average failure rate does not account for any recovery.

|         | Analysis |          |          |          |          |          | ]     | Distribut | ion      |
|---------|----------|----------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling | Failure  | Type /   |          |          |          |          |       |           |          |
| Group   | Mode     | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| >15kV   | FTOP     | EB/PL/KS | 2.58E-07 | 1.55E-06 | 1.93E-06 | 4.88E-06 | Gamma | 1.63      | 8.47E+05 |

Table 107. Selected industry distributions of p and  $\lambda$  for TFMs.

## A-5.9 Sequencer (SEQ)

### A-5.9.1 Component Description

The sequencer (SEQ) boundary includes the relays, logic modules, etc. that comprise the sequencer function of the emergency diesel generator (EDG) load process. The failure modes for SEQ are listed in Table 83.

### A-5.9.2 Data Collection and Review

Data for the SEQ UR baseline were obtained from the IRIS database, covering 2006–2020 using RADS. The EPIX data was analyzed outside of RADS to determine the failures in the sequencer subcomponent. The demand data are based on assuming a full test of the sequencer every fuel cycle (18 months) for each EDG. Table 108 summarizes the data obtained from EPIX and used in the SEQ analysis.

|                  |                 | D        | DataCounts                   |            |         | Percent with Failures |          |  |
|------------------|-----------------|----------|------------------------------|------------|---------|-----------------------|----------|--|
| Pooling<br>Group | Failure<br>Mode | Failures | Demands or<br>Failures Hours |            | Plants  | Components            | Plants   |  |
| Group            | WIGht           | Failures | liouis                       | Components | 1 Iants | Components            | 1 141115 |  |
| -                | FTOP            | 6        | 61,363 d                     | 234        | 95      | 2.6%                  | 6.3%     |  |

# A-5.9.3 Industry-Average Baselines

Table 108 SEO unreliability data

Table 109 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

Table 109. Selected industry distributions of p and  $\lambda$  for SEQs.

|                  |                 | Analysis         |          |          |          |          |      | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре | α         | в        |
| -                | FTOP            | JNID/IL          | 4.80E-05 | 1.00E-04 | 1.06E-04 | 1.82E-04 | Beta | 6.50      | 6.14E+04 |

## A-5.10 Fuse (FUS)

#### A-5.10.1 Component Description

The fuse (FUS) boundary includes the transformer unit, which includes the wiring, cooling, and protection equipment. The failure modes for FUS are listed in Table 83.

#### A-5.10.2 Data Collection and Review

Data for FUS UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the FUS data collection are listed in Table 110 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                                                | Num     | ber of Compone | ents  |
|---------|------------------------------------------------|---------|----------------|-------|
|         |                                                | High/   |                |       |
| Pooling |                                                | Unknown | Low            |       |
| Group   | System                                         | Demand  | Demand         | Total |
| All     | Auxiliary feedwater (AFW)                      | 8       |                | 8     |
|         | Circulating water system (CWS)                 | 14      |                | 14    |
|         | Component cooling water (CCW)                  | 4       |                | 4     |
|         | Containment fan cooling (CFC)                  | 6       |                | 6     |
|         | Containment isolation system (CIS)             | 5       |                | 5     |
|         | Control rod drive (CRD)                        | 8       |                | 8     |
|         | dc power (DCP)                                 | 369     |                | 369   |
|         | Emergency power supply (EPS)                   | 26      |                | 26    |
|         | Heating ventilation and air conditioning (HVC) | 48      |                | 48    |
|         | Instrument air (IAS)                           | 2       |                | 2     |
|         | Main steam (MSS)                               | 24      |                | 24    |
|         | Plant ac power (ACP)                           | 310     |                | 310   |
|         | Reactor coolant (RCS)                          | 23      |                | 23    |
|         | Grand Total                                    | 847     |                | 847   |

#### Table 110. FUS systems.

Table 111 summarizes the data obtained from EPIX and used in the FUS analysis. Note that the hours are reactor-year hours.

| Table 111.  | FUS | unreliability | z data. |
|-------------|-----|---------------|---------|
| 1 4010 1111 | 100 | unuonnu       | y aaaa. |

|         |         |          | Data          |           | Counts |            | <b>Percent with Failures</b> |  |
|---------|---------|----------|---------------|-----------|--------|------------|------------------------------|--|
| Pooling | Failure |          | Demands or    | Component |        |            |                              |  |
| Group   | Mode    | Failures | Hours         | S         | Plants | Components | Plants                       |  |
| -       | SOP     | 1        | 169,366,800 h | 1,288     | 5      | 0.1%       | 20.0%                        |  |

#### A-5.10.3 Industry-Average Baselines

Table 112 lists the industry-average failure rate distributions. This industry-average failure rate does not account for any recovery.

| 10010 112.       | Analysis        |                  |          |          |          |          |       |      | tion     |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α    | β        |
| -                | SOP             | JNID/IL          | 1.04E-09 | 7.00E-09 | 8.86E-09 | 2.31E-08 | Gamma | 1.50 | 1.69E+08 |

Table 112. Selected industry distributions of p and  $\lambda$  for FUS.

### A-6. STRAINERS

This section contains reliability results for various strainer-like components used in PRAs. The strainers include passive filters (FLT), self-cleaning filters (FLTSC), travelling screens (TSA), and trash racks (TRK).

The failure modes for the strainer are listed in Table 113.

Table 113. Strainer failure modes.

|                   | Failure |           |       |                     |
|-------------------|---------|-----------|-------|---------------------|
| Pooling Group     | Mode    | Parameter | Units | Description         |
| All               | PG      | λ         | 1/h   | Plug                |
|                   | ELS     | λ         | 1/h   | External leak small |
|                   | ELL     | λ         | 1/h   | External leak large |
|                   | BYP     | λ         | 1/h   | Bypass              |
|                   | ILL     | λ         | 1/h   | Internal leak large |
| Self Cleaning and | FTOP    | λ         | 1/h   | Failure to operate  |
| Travelling Screen |         |           |       | -                   |

The systems and operational status included in the strainer data collection are listed in Table 114 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

Table 114. Strainer systems and component counts.

|         |                                                | Num     | ber of Compone | nts   |
|---------|------------------------------------------------|---------|----------------|-------|
|         |                                                | High/   |                |       |
| Pooling |                                                | Unknown | Low            |       |
| Group   | System                                         | Demand  | Demand         | Total |
| FLT     | Auxiliary feedwater (AFW)                      | 5       | 10             | 15    |
|         | Chemical and volume control (CVC)              | 20      |                | 20    |
|         | Circulating water system (CWS)                 | 15      |                | 15    |
|         | Component cooling water (CCW)                  | 24      |                | 24    |
|         | Condensate system (CDS)                        | 10      |                | 10    |
|         | Containment spray recirculation (CSR)          | 13      |                | 13    |
|         | Control rod drive (CRD)                        | 21      |                | 21    |
|         | Emergency power supply (EPS)                   | 35      |                | 35    |
|         | Firewater (FWS)                                | 10      |                | 10    |
|         | Heating ventilation and air conditioning (HVC) | 3       |                | 3     |
|         | High pressure core spray (HCS)                 | 3       |                | 3     |
|         | Instrument air (IAS)                           | 2       |                | 2     |
|         | Low pressure core spray (LCS)                  | 1       |                | 1     |
|         | Main feedwater (MFW)                           | 6       |                | 6     |
|         | Main steam (MSS)                               | 1       |                | 1     |
|         | Normally operating service water (SWN)         | 3       |                | 3     |
|         | Reactor core isolation (RCI)                   | 2       |                | 2     |
|         | Residual Heat Removal (LCI in BWRs, LPI in     | 5       |                | 5     |
|         | PWRs) (RHR)                                    |         |                |       |
|         | Standby service water (SSW)                    | 29      | 2              | 31    |
|         | FLT Total                                      | 208     | 12             | 220   |
| FLTSC   | Normally operating service water (SWN)         | 104     | 2              | 106   |

60

|         |                                            | Num     | ber of Compone | nts   |
|---------|--------------------------------------------|---------|----------------|-------|
|         |                                            | High/   | -              |       |
| Pooling |                                            | Unknown | Low            |       |
| Group   | System                                     | Demand  | Demand         | Total |
|         | Residual Heat Removal (LCI in BWRs, LPI in | 4       |                | 4     |
|         | PWRs) (RHR)                                |         |                |       |
|         | Standby service water (SSW)                | 59      |                | 59    |
|         | FLTSC Total                                | 167     | 2              | 169   |
| Sump    | Chemical and volume control (CVC)          | 7       |                | 7     |
| _       | Containment spray recirculation (CSR)      | 7       |                | 7     |
|         | Control rod drive (CRD)                    | 17      |                | 17    |
|         | High pressure coolant injection (HCI)      | 3       |                | 3     |
|         | High pressure core spray (HCS)             | 5       |                | 5     |
|         | Low pressure core spray (LCS)              | 5       |                | 5     |
|         | Reactor core isolation (RCI)               | 8       |                | 8     |
|         | Residual Heat Removal (LCI in BWRs, LPI in | 43      |                | 43    |
|         | PWRs) (RHR)                                |         |                |       |
|         | Sump Total                                 | 95      |                | 95    |
| TRK     | Circulating water system (CWS)             | 10      |                | 10    |
|         | TRK Total                                  | 10      |                | 10    |
| TSA     | Circulating water system (CWS)             | 163     |                | 163   |
|         | Normally operating service water (SWN)     | 34      |                | 34    |
|         | Standby service water (SSW)                | 15      |                | 15    |
|         | TSA Total                                  | 212     |                | 212   |
|         | Grand Total                                | 692     | 14             | 706   |

### A-6.1 Filter (FLT)

#### A-6.1.1 Component Description

The filter (FLT) boundary includes the filter. The failure modes for the FLT are listed in Table 113. The systems available in the FLT data collection are listed in Table 115 with the number of components included with each system. The FLT data analysis uses only data from components installed in "clean" systems (e.g., not service water).

#### A-6.1.2 Data Collection and Review

Data for FLT UR baselines were obtained from the IRIS database, covering 1997–2004. Table 115 summarizes the data obtained from EPIX and used in the FLT analysis. Note that PG hours are reactor-year hours.

|           |         | Data     |                   | Counts     | Counts |            | Failures |
|-----------|---------|----------|-------------------|------------|--------|------------|----------|
| Pooling   | Failure |          | <b>Demands</b> or |            |        |            |          |
| Group     | Mode    | Failures | Hours             | Components | Plants | Components | Plants   |
| FLT       | PG      | 6        | 7,922,615 h       | 62         | 20     | 8.1%       | 20.0%    |
| FLT       | ELS     | 1        | 28,097,240 h      | 223        | 47     | 0.4%       | 2.1%     |
| FLT       | ELL     |          |                   | 223        | 47     |            |          |
| FLT-Clean | PG      | 1        | 8,161,140 h       | 68         | 19     | 1.5%       | 5.3%     |
| FLT-Clean | BYP     | 0        | 8,161,140 h       | 68         | 19     | 0.0%       | 0.0%     |
| FLT-IAS   | PG      | 0        | 210,384 h         | 2          | 1      | 0.0%       | 0.0%     |

Table 115. FLT unreliability data.

### A-6.1.3 Industry-Average Baselines

Table 116 lists the industry-average failure rate distribution. These industry-average failure rates do not account for any recovery.

|           |         | Analysis |          |          |          |          |       | Distribut | tion     |
|-----------|---------|----------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling   | Failure | Type /   |          |          |          |          |       |           |          |
| Group     | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| FLT       | PG      | JNID/IL  | 3.72E-07 | 7.79E-07 | 8.20E-07 | 1.41E-06 | Gamma | 6.50      | 7.92E+06 |
| FLT       | ELS     | JNID/IL  | 6.26E-09 | 4.21E-08 | 5.34E-08 | 1.39E-07 | Gamma | 1.50      | 2.81E+07 |
| FLT       | ELL     |          | 4.00E-13 | 9.11E-10 | 3.74E-09 | 1.71E-08 | Gamma | 0.30      | 8.03E+07 |
| FLT-Clean | PG      | JNID/IL  | 2.16E-08 | 1.45E-07 | 1.84E-07 | 4.79E-07 | Gamma | 1.50      | 8.16E+06 |
| FLT-Clean | BYP     | JNID/IL  | 2.41E-10 | 2.79E-08 | 6.13E-08 | 2.35E-07 | Gamma | 0.50      | 8.16E+06 |
| FLT-IAS   | PG      | JNID/IL  | 9.36E-09 | 1.08E-06 | 2.38E-06 | 9.15E-06 | Gamma | 0.50      | 2.10E+05 |

Table 116. Selected industry distributions of p and  $\lambda$  for FLTs.

### A-6.2 Self-Cleaning Strainer (FLTSC)

#### A-6.2.1 Component Description

The strainer (FLTSC) component boundary includes the strainer, the rotating assembly, backwash valves, and control circuitry. The failure modes for FLTSC are listed in Table 113.

#### A-6.2.2 Data Collection and Review

Data for the FLTSC UR baseline were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the FLTSC data collection are listed in Table 117 with the number of components included with each system.

Table 117 summarizes the data used in the FLTSC analysis. Note that FTOP, BYP, ELS, and PG hours are reactor-year hours.

|               |         | Data   |              | Counts     | Counts |            | Failures |
|---------------|---------|--------|--------------|------------|--------|------------|----------|
|               | Failure |        | Demands or   |            |        |            |          |
| Pooling Group | Mode    | Events | Hours        | Components | Plants | Components | Plants   |
| FLTSC         | PG      | 32     | 21,560,060 h | 167        | 47     | 9.0%       | 21.3%    |
| FLTSC         | BYP     | 0      | 21,560,060 h | 167        | 47     | 0.0%       | 0.0%     |
| FLTSC         | FTOP    | 53     | 21,560,060 h | 167        | 47     | 16.2%      | 31.9%    |
| FLTSC         | ELS     | 2      | 21,560,060 h | 167        | 47     | 1.2%       | 4.3%     |
| FLTSC         | ELL     |        |              | 167        | 47     |            |          |
| FLTSC-SWN     | PG      | 19     | 13,235,010 h | 103        | 33     | 7.8%       | 15.2%    |
| FLTSC-SSW     | PG      | 13     | 7,799,060 h  | 60         | 26     | 11.7%      | 19.2%    |
| FLTSC-SSW-EE  | PG      | 1      | 7,799,060 h  | 60         | 26     | 1.7%       | 3.8%     |
| FLTSC-SSW-NE  | PG      | 10     | 7,799,060 h  | 60         | 26     | 10.0%      | 15.4%    |

| Table 117 | . FLTSC | unreliability | data. |
|-----------|---------|---------------|-------|
|-----------|---------|---------------|-------|

#### A-6.2.3 Industry-Average Baselines

Table 118 lists the industry-average failure rate distribution for the FLTSC component. These industry-average failure rates do not account for any recovery.

|            |         | Analysis |          |          |          |          | I     | Distribut | ion      |
|------------|---------|----------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling    | Failure | Type /   |          |          |          |          |       |           |          |
| Group      | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| FLTSC      | PG      | JNID/IL  | 1.10E-06 | 1.49E-06 | 1.51E-06 | 1.96E-06 | Gamma | 32.50     | 2.16E+07 |
| FLTSC      | BYP     | JNID/IL  | 9.10E-11 | 1.05E-08 | 2.32E-08 | 8.89E-08 | Gamma | 0.50      | 2.16E+07 |
| FLTSC      | FTOP    | JNID/IL  | 1.95E-06 | 2.46E-06 | 2.48E-06 | 3.06E-06 | Gamma | 53.50     | 2.16E+07 |
| FLTSC      | ELS     | JNID/IL  | 2.65E-08 | 1.01E-07 | 1.16E-07 | 2.56E-07 | Gamma | 2.50      | 2.16E+07 |
| FLTSC      | ELL     |          | 8.69E-13 | 1.98E-09 | 8.12E-09 | 3.71E-08 | Gamma | 0.30      | 3.69E+07 |
| FLTSC-SWN  | PG      | JNID/IL  | 9.73E-07 | 1.45E-06 | 1.47E-06 | 2.07E-06 | Gamma | 19.50     | 1.32E+07 |
| FLTSC-SSW  | PG      | JNID/IL  | 1.04E-06 | 1.69E-06 | 1.73E-06 | 2.57E-06 | Gamma | 13.50     | 7.80E+06 |
| FLTSC-SSW- | PG      | JNID/IL  | 2.26E-08 | 1.52E-07 | 1.92E-07 | 5.01E-07 | Gamma | 1.50      | 7.80E+06 |
| EE         |         |          |          |          |          |          |       |           |          |
| FLTSC-SSW- | PG      | JNID/IL  | 7.43E-07 | 1.30E-06 | 1.35E-06 | 2.09E-06 | Gamma | 10.50     | 7.80E+06 |
| NE         |         |          |          |          |          |          |       |           |          |

Table 118. Selected industry distributions of p and  $\lambda$  for FLTSCs.

## A-6.3 Sump Strainer (SMP)

#### A-6.3.1 Component Description

The sum strainer (SMP) component boundary includes the strainer. The failure modes for SMP are listed in Table 113.

#### A-6.3.2 Data Collection and Review

Data for the SMP UR baseline were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the SMP data collection are listed in Table 119 with the number of components included with each system.

Table 119 summarizes the data used in the SMP analysis. Note that PG hours are reactor-year hours.

Table 119. SMP unreliability data.

|          |         |        | Data        |            | Counts |            | Failures |
|----------|---------|--------|-------------|------------|--------|------------|----------|
| Pooling  | Failure |        | Demands or  |            |        |            |          |
| Group    | Mode    | Events | Hours       | Components | Plants | Components | Plants   |
| Sump PWR | PG      | 1      | 3,528,454 h | 29         | 14     | 3.4%       | 7.1%     |
| Sump BWR | PG      | 0      | 5,522,832 h | 42         | 7      | 0.0%       | 0.0%     |

#### A-6.3.3 Industry-Average Baselines

Table 120 lists the industry-average failure rate distribution for the SMP component. These industryaverage failure rates do not account for any recovery.

Table 120. Selected industry distributions of p and  $\lambda$  for SMPs.

|                  |                 | Analysis         |          |          |          |          | Γ     | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| Sump PWR         | PG              | JNID/IL          | 4.98E-08 | 3.35E-07 | 4.25E-07 | 1.11E-06 | Gamma | 1.50      | 3.53E+06 |
| Sump BWR         | PG              | JNID/IL          | 3.56E-10 | 4.12E-08 | 9.05E-08 | 3.48E-07 | Gamma | 0.50      | 5.52E+06 |

## A-6.4 Traveling Screen Assembly (TSA)

### A-6.4.1 Component Description

The traveling screen (TSA) component boundary includes the traveling screen, motor, and drive mechanism. The failure modes for TSA are listed in Table 113.

#### A-6.4.2 Data Collection and Review

Data for the TSA UR baseline were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the TSA data collection are listed in Table 121 with the number of components included with each system.

Table 121 summarizes the data used in the TSA analysis. Note that FTOP, BYP, and PG hours are reactor-year hours.

|            |         | Data   |              | Counts     |        | Percent with Failures |        |
|------------|---------|--------|--------------|------------|--------|-----------------------|--------|
| Pooling    | Failure |        | Demands or   |            |        |                       |        |
| Group      | Mode    | Events | Hours        | Components | Plants | Components            | Plants |
| TSA        | PG      | 37     | 25,155,920 h | 205        | 48     | 11.2%                 | 29.2%  |
| TSA        | BYP     | 2      | 25,155,920 h | 205        | 48     | 1.0%                  | 4.2%   |
| TSA        | FTOP    | 45     | 25,155,920 h | 205        | 48     | 16.6%                 | 43.8%  |
| TSA-SSW    | PG      | 0      | 1,972,440 h  | 15         | 5      | 0.0%                  | 0.0%   |
| TSA-SSW-NE | PG      | 0      | 1,972,440 h  | 15         | 5      | 0.0%                  | 0.0%   |

#### Table 121. TSA unreliability data.

### A-6.4.3 Industry-Average Baselines

Table 122 lists the industry-average failure rate distribution for the TSA component. These industryaverage failure rates do not account for any recovery.

| 14010 122. 501 | eetea ma | ability another | ations of p | und re ror | 101101   |          |       |            |     |
|----------------|----------|-----------------|-------------|------------|----------|----------|-------|------------|-----|
|                |          | Analysis        |             |            |          |          | Ι     | Distributi | on  |
| Pooling        | Failure  | Type /          |             |            |          |          |       |            |     |
| Group          | Mode     | Source          | 5%          | Median     | Mean     | 95%      | Туре  | α          |     |
| TSA            | PG       | JNID/IL         | 1.11E-06    | 1.47E-06   | 1.49E-06 | 1.91E-06 | Gamma | 37.50      | 2.5 |
| TSA            | BYP      | JNID/IL         | 2.27E-08    | 8.63E-08   | 9.94E-08 | 2.20E-07 | Gamma | 2.50       | 2.5 |
| TSA            | FTOP     | EB/PL/KS        | 1.30E-08    | 1.04E-06   | 2.12E-06 | 7.86E-06 | Gamma | 0.55       | 2.5 |
| TSA-SSW        | PG       | JNID/IL         | 9.98E-10    | 1.15E-07   | 2.53E-07 | 9.75E-07 | Gamma | 0.50       | 1.9 |
|                |          |                 |             |            |          |          |       |            |     |

1.15E-07

2.53E-07

9.75E-07

Gamma

9.98E-10

Table 122. Selected industry distributions of p and  $\lambda$  for TSAs.

JNID/IL

TSA-SSW-NE

PG

2.52E+07 2.52E+07 2.59E+05

1.97E+06

1.97E+06

0.50

## A-6.5 Trash Rack (TRK)

#### A-6.5.1 Component Description

The trash rack (TRK) component boundary includes the traveling screen, motor, and drive mechanism. The failure modes for TRK are listed in Table 113.

#### A-6.5.2 Data Collection and Review

Data for the TRK UR baseline were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the TRK data collection are listed in Table 123 with the number of components included with each system.

Table 123 summarizes the data used in the TRK analysis. Note that PG hours are reactor-year hours.

Table 123. TRK unreliability data.

|         |         |        | Data        | Counts     |        | <b>Percent with Failures</b> |        |
|---------|---------|--------|-------------|------------|--------|------------------------------|--------|
| Pooling | Failure |        | Demands or  |            |        |                              |        |
| Group   | Mode    | Events | Hours       | Components | Plants | Components                   | Plants |
| TRK     | PG      | 0      | 1,314,960 h | 10         | 5      | 0.0%                         | 0.0%   |

#### A-6.5.3 Industry-Average Baselines

Table 124 lists the industry-average failure rate distribution for the TRK component. These industryaverage failure rates do not account for any recovery.

| Table 124. Selected industry distributions of p and $\lambda$ for TRKs. | Table 124. | . Selected industry | v distributions of | p and $\lambda$ for TRKs. |
|-------------------------------------------------------------------------|------------|---------------------|--------------------|---------------------------|
|-------------------------------------------------------------------------|------------|---------------------|--------------------|---------------------------|

|         |         | Analysis |          |          |          |          | Ι     | Distributi | ion      |
|---------|---------|----------|----------|----------|----------|----------|-------|------------|----------|
| Pooling | Failure | Type /   |          |          |          |          |       |            |          |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α          | β        |
| TRK     | PG      | JNID/IL  | 1.50E-09 | 1.74E-07 | 3.80E-07 | 1.47E-06 | Gamma | 0.50       | 1.31E+06 |

## A-7. REACTOR PROTECTION

This section presents reliability data pertaining to the reactor protection system (RPS). The failure modes for reactor protection components are listed in Table 125.

Table 125. Reactor protection equipment failure modes.

| Pooling Group | Failure Mode | Parameter | Units | Description     |
|---------------|--------------|-----------|-------|-----------------|
| All           | FTOP         | р         | -     | Fail to operate |

### A-7.1 Bistable (BIS)

#### A-7.1.1 Component Description

The bistable (BIS) boundary includes the bistable unit itself. The failure mode for BIS is listed in Table 125.

#### A-7.1.2 Data Collection and Review

Data for the BIS UR baseline were obtained from the reactor protection system (RPS) system studies (SSs) [A-5, A-6, A-7, A-8]. The RPS SSs contain data from 1984 to 1995. Table 126 summarizes the data obtained from the RPS SSs and used in the BIS analysis. These data are at the industry level. Results at the plant and component levels are not presented in these studies.

Table 126. BIS unreliability data.

|         |         | ]        | Data       | Count      | S      | Percent with Failures |        |
|---------|---------|----------|------------|------------|--------|-----------------------|--------|
| Pooling | Failure |          | Demands or |            |        |                       |        |
| Group   | Mode    | Failures | Hours      | Components | Plants | Components            | Plants |
| All     | FTOP    | 55       | 102,094 d  | -          | -      | -                     | -      |

#### A-7.1.3 Industry-Average Baselines

Table 127 lists the industry-average failure rate distribution. The FTOP failure mode is not supported by EPIX data. The selected FTOP distribution has a mean based on the Jeffreys mean of industry data and  $\alpha = 0.5$ . For all distributions based on RPS SS data, an  $\alpha$  of 0.5 is assumed (see Section A.1 in NUREG/CR-6928).

Distribution Analysis Pooling Failure Type / 95% Group Mode Source 5% Median Mean Туре α ß FTOP RPS SS 2.14E-06 2.47E-04 5.44E-04 2.09E-03 0.500 9.198E+02 All Beta

Table 127. Selected industry distributions of p and  $\lambda$  for BISs.

## A-7.2 Process Logic Components (PLDT, PLF, PLL, PLP)

### A-7.2.1 Component Description

The process logic delta temperature (PLDT), process logic flow (PLF), process logic level (PLL), and process logic pressure (PLP boundary includes the logic components. The failure modes for these components are listed in Table 125.

### A-7.2.2 Data Collection and Review

Data for process logic component UR baselines were obtained from the reactor protection system (RPS) system studies (SSs). The RPS SSs contain data from 1984 to 1995. Table 128 summarizes the data obtained from the RPS SSs and used in the process logic component analysis. These data are at the industry level. Results at the plant and component levels are not presented in these studies.

|                  | Component       | Data                         |          | Counts     | 5      | Percent with Failures |        |
|------------------|-----------------|------------------------------|----------|------------|--------|-----------------------|--------|
| Pooling<br>Group | Failure<br>Mode | Demands or<br>Failures Hours |          | Components | Plants | Components            | Plants |
| All              | PLDT FTOP       | 24                           | 4,887 d  | -          | -      | -                     | -      |
|                  | PLF FTOP        | -                            | -        | -          | -      | -                     | -      |
|                  | PLL FTOP        | 3                            | 6,075 d  | -          | -      | -                     | -      |
|                  | PLP FTOP        | 6                            | 38,115 d | -          | -      | -                     | -      |

Table 128. Process logic component unreliability data.

#### A-7.2.3 Industry-Average Baselines

Table 129 lists the industry-average failure rate distributions. The FTOP failure mode is not supported by EPIX data. The selected FTOP distributions have means based on the Jeffreys mean of industry data and  $\alpha = 0.5$ . For all distributions based on RPS SS data, an  $\alpha$  of 0.5 is assumed (see Section A.1 in NUREG/CR-6928). Because PLF has no data, the PLL result was used for the PLL mean.

Table 129. Selected industry distributions of p and  $\lambda$  for process logic components.

|         | Component | Analysis |          |          |          | _        |      | Distribu | tion      |
|---------|-----------|----------|----------|----------|----------|----------|------|----------|-----------|
| Pooling | Failure   | Type /   |          |          |          |          |      |          |           |
| Group   | Mode      | Source   | 5%       | Median   | Mean     | 95%      | Туре | α        | β         |
| All     | PLDT FTOP | RPS SS   | 2.01E-05 | 2.32E-03 | 5.07E-03 | 1.94E-02 | Beta | 0.500    | 9.805E+01 |
|         | PLF FTOP  | PLL      | 2.46E-06 | 2.85E-04 | 6.25E-04 | 2.40E-03 | Beta | 0.500    | 7.990E+02 |
|         | PLL FTOP  | RPS SS   | 2.46E-06 | 2.85E-04 | 6.25E-04 | 2.40E-03 | Beta | 0.500    | 7.990E+02 |
|         | PLP FTOP  | RPS SS   | 6.29E-07 | 7.28E-05 | 1.60E-04 | 6.15E-04 | Beta | 0.500    | 3.124E+03 |

## A-7.3 Sensor/Transmitter Components (STF, STL, STP, STT)

### A-7.3.1 Component Description

The sensor/transmitter flow (STF), sensor/transmitter level (STL), sensor/transmitter pressure (STP), and sensor/transmitter temperature (STT) boundaries includes the sensor and transmitter. The failure modes for sensor/transmitter are listed in Table 125.

### A-7.3.2 Data Collection and Review

Data for the sensor/transmitter UR baseline were obtained from the reactor protection system (RPS) system studies (SSs). The RPS SSs contain data from 1984 to 1995. Table 130 summarizes the data obtained from the RPS SSs and used in the sensor/transmitter analysis. These data are at the industry level. Results at the plant and component levels are not presented in these studies. Unlike other component failure modes, each component FTOP has both a demand and a calendar time contribution.

|                   |              | Data     |              | Count      | Counts |            | Failures |
|-------------------|--------------|----------|--------------|------------|--------|------------|----------|
| Pooling Component |              |          | Demands or   |            |        |            |          |
| Group             | Failure Mode | Failures | Hours        | Components | Plants | Components | Plants   |
| All               | STF FTOP     | -        | -            | -          | -      | -          | -        |
|                   | STF FTOP     | -        | -            | -          | -      | -          | -        |
|                   | STL FTOP     | 5        | 6,750 d      | -          | -      | -          | -        |
|                   | STL FTOP     | 0        | 9,831,968 h  | -          | -      | -          | -        |
|                   | STP FTOP     | 2        | 23,960 d     | -          | -      | -          | -        |
|                   | STP FTOP     | 35       | 43,430,451 h | -          | -      | -          | -        |
|                   | STT FTOP     | 17       | 40,759 d     | -          | -      | -          | -        |
|                   | STT FTOP     | 29       | 35,107,399 h | -          | -      | -          | -        |

| Table 130    | Sensor/transmitter | unreliability | data |
|--------------|--------------------|---------------|------|
| 1 auto 1 50. | Sensor/transmitter | umenaomity    | uata |

### A-7.3.3 Industry-Average Baselines

Table 131 lists the industry-average failure rate distributions. The FTOP failure mode is not supported by EPIX data. The selected FTOP distributions have means based on the Jeffreys mean of industry data and  $\alpha = 0.5$ . For all distributions based on RPS SS data, an  $\alpha$  of 0.5 is assumed (see Section A.1 in NUREG/CR-6928). Because there were no data for STF FTOP, the results for STL FTOP were used.

|                  |                           | Analysis         |          |          |          |          | Distribution |       |           |
|------------------|---------------------------|------------------|----------|----------|----------|----------|--------------|-------|-----------|
| Pooling<br>Group | Component<br>Failure Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре         | α     | β         |
| All              | STF FTOP                  | STL              | 3.21E-06 | 3.71E-04 | 8.15E-04 | 3.13E-03 | Beta         | 0.500 | 6.132E+02 |
|                  | STF FTOP                  | STL              | 4.00E-10 | 4.63E-08 | 1.02E-07 | 3.91E-07 | Gamma        | 0.500 | 4.916E+06 |
|                  | STL FTOP                  | RPS SS           | 3.21E-06 | 3.71E-04 | 8.15E-04 | 3.13E-03 | Beta         | 0.500 | 6.132E+02 |
|                  | STL FTOP                  | RPS SS           | 4.00E-10 | 4.63E-08 | 1.02E-07 | 3.91E-07 | Gamma        | 0.500 | 4.916E+06 |
|                  | STP FTOP                  | RPS SS           | 4.60E-07 | 5.32E-05 | 1.17E-04 | 4.49E-04 | Beta         | 0.500 | 4.278E+03 |
|                  | STP FTOP                  | RPS SS           | 3.23E-09 | 3.74E-07 | 8.22E-07 | 3.16E-06 | Gamma        | 0.500 | 6.083E+05 |
|                  | STT FTOP                  | RPS SS           | 1.70E-06 | 1.97E-04 | 4.32E-04 | 1.66E-03 | Beta         | 0.500 | 1.157E+03 |
|                  | STT FTOP                  | RPS SS           | 3.30E-09 | 3.82E-07 | 8.40E-07 | 3.23E-06 | Gamma        | 0.500 | 5.950E+05 |

Table 131. Selected industry distributions of p and  $\lambda$  for sensor/transmitters.

### A-7.4 Reactor Trip Breaker (RTB)

### A-7.4.1 Component Description

The reactor trip breaker (RTB) boundary includes the entire trip breaker. The RTB has been broken up into three subcomponents for use in modeling the failure of the RTB to open on demand. These three subcomponents are the mechanical portion of the breaker (BME), the breaker shunt trip (BSN), and the breaker undervoltage trip (BUV). The component and subcomponent failure modes for RTB are listed in Table 125.

| <b>Pooling Group</b> | Failure Mode    | Parameter | Units | Description         |
|----------------------|-----------------|-----------|-------|---------------------|
| All                  | BME FTOP        | р         | -     | BME fail to operate |
|                      | BSN FTOP        | p         | -     | BSN fail to operate |
|                      | BUV FTOP        | p         | -     | BUV fail to operate |
|                      | <b>RTB FTOP</b> | p         | -     | RTB fail to operate |

Table 132. RTB failure modes.

### A-7.4.2 Data Collection and Review

Data for RTB UR baselines were obtained from the pressurized water reactor (PWR) reactor protection system (RPS) system studies (SSs). The RPS SSs contain data from 1984 to 1995. Table 133summarizes the data obtained from the RPS SSs and used in the RTB analysis. These data are at the industry level. Results at the plant and component levels are not presented in these studies.

Table 133. RTB unreliability data.

|         |          | Data     |            | Count      | S      | Percent with I | Percent with Failures |  |
|---------|----------|----------|------------|------------|--------|----------------|-----------------------|--|
| Pooling | Failure  |          | Demands or |            |        |                |                       |  |
| Group   | Mode     | Failures | Hours      | Components | Plants | Components     | Plants                |  |
| All     | BME FTOP | 1        | 97,359 d   | -          | -      | -              | -                     |  |
|         | BSN FTOP | 14       | 44,104 d   | -          | -      | -              | -                     |  |
|         | BUV FTOP | 23       | 57,199 d   | -          | -      | -              | -                     |  |
|         | RTB FTOP | -        | -          | -          | -      | -              | -                     |  |

### A-7.4.3 Industry-Average Baselines

Table 134 lists the industry-average failure rate distributions. The selected FTOP distributions have means based on the Jeffreys mean of industry data and  $\alpha = 0.5$ . For all distributions based on RPS SS data, an  $\alpha$  of 0.5 is assumed (see Section A.1 in NUREG/CR-6928). The RTB FTOP is calculated using a Boolean expression for the RTB failure involving either the BME failure or the combination of BSN and BUV failures.

Table 134. Selected industry distributions of p and  $\lambda$  for RTBs.

|                  |                 | Analysi            |          |          |          |          | Distribution |       |           |  |
|------------------|-----------------|--------------------|----------|----------|----------|----------|--------------|-------|-----------|--|
| Pooling<br>Group | Failure<br>Mode | s Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре         | α     | β         |  |
| All              | BME FTOP        | RPS SS             | 6.06E-08 | 7.01E-06 | 1.54E-05 | 5.92E-05 | Beta         | 0.500 | 3.245E+04 |  |
|                  | BSN FTOP        | RPS SS             | 1.29E-06 | 1.50E-04 | 3.29E-04 | 1.26E-03 | Beta         | 0.500 | 1.521E+03 |  |
|                  | BUV FTOP        | RPS SS             | 1.62E-06 | 1.88E-04 | 4.13E-04 | 1.58E-03 | Beta         | 0.500 | 1.212E+03 |  |
|                  | RTB FTOP        | RPS SS             | 6.11E-08 | 7.07E-06 | 1.55E-05 | 5.97E-05 | Beta         | 0.500 | 3.217E+04 |  |

### A-7.5 Manual Switch (MSW)

### A-7.5.1 Component Description

The manual switch (MSW) boundary includes the switch itself. The failure mode for MSW is listed in Table 125.

#### A-7.5.2 Data Collection and Review

Data for the MSW UR baseline were obtained from the reactor protection system (RPS) system studies (SSs). The RPS SSs contain data from 1984 to 1995. Table 135 summarizes the data obtained from the RPS SSs and used in the MSW analysis. These data are at the industry level. Results at the plant and component levels are not presented in these studies.

Table 135. MSW unreliability data.

|         |         | ]        | Data           | Count | s      | Percent with Failures |        |
|---------|---------|----------|----------------|-------|--------|-----------------------|--------|
| Pooling | Failure |          | Demands or     |       |        |                       |        |
| Group   | Mode    | Failures | Failures Hours |       | Plants | Components            | Plants |
| All     | FTOC    | 2        | 19,789 d       | -     | -      | -                     | -      |

#### A-7.5.3 Industry-Average Baselines

Table 136 lists the industry-average failure rate distributions. The FTOC failure mode is not supported by EPIX data. The selected FTOC distribution has a mean based on the Jeffreys mean of industry data and  $\alpha = 0.5$ . For all distributions based on RPS SS data, an  $\alpha$  of 0.5 is assumed (see Section A.1 in NUREG/CR-6928).

Table 136. Selected industry distributions of p and  $\lambda$  for MSWs.

|         | Analysis |        |          |          |          |          |      | Distribut | ion       |
|---------|----------|--------|----------|----------|----------|----------|------|-----------|-----------|
| Pooling | Failure  | Type / |          |          |          |          |      |           |           |
| Group   | Mode     | Source | 5%       | Median   | Mean     | 95%      | Туре | α         | β         |
| All     | FTOC     | RPS SS | 4.97E-07 | 5.75E-05 | 1.26E-04 | 4.85E-04 | Beta | 0.500     | 3.958E+03 |

### A-7.6 Relay (RLY)

### A-7.6.1 Component Description

The relay (RLY) boundary includes the relay unit itself. The failure mode for RLY is listed in Table 125.

### A-7.6.2 Data Collection and Review

Data for the RLY UR baseline were obtained from the reactor protection system (RPS) system studies (SSs). The RPS SSs contain data from 1984 to 1995. Table 137 summarizes the data obtained from the RPS SSs and used in the RLY analysis. These data are at the industry level. Results at the plant and component levels are not presented in these studies.

Table 137. RLY unreliability data.

|         |         | I        | Data       | Count      | s      | Percent with Failures |        |
|---------|---------|----------|------------|------------|--------|-----------------------|--------|
| Pooling | Failure |          | Demands or |            |        |                       |        |
| Group   | Mode    | Failures | Hours      | Components | Plants | Components            | Plants |
| -       | FTOP    | 24       | 974,417 d  | -          | -      | -                     | -      |

#### A-7.6.3 Industry-Average Baselines

Table 138 lists the industry-average failure rate distribution. The FTOP failure mode is not supported by EPIX data. The selected FTOP distribution has a mean based on the Jeffreys mean of industry data and  $\alpha = 0.5$ . For all distributions based on RPS SS data, an  $\alpha$  of 0.5 is assumed (see Section A.1 in NUREG/CR-6928).

Table 138. Selected industry distributions of p and  $\lambda$  for RLYs.

|         | Analysis |        |          |          |          | Distribut | ion  |       |           |
|---------|----------|--------|----------|----------|----------|-----------|------|-------|-----------|
| Pooling | Failure  | Type / |          |          |          |           |      |       |           |
| Group   | Mode     | Source | 5%       | Median   | Mean     | 95%       | Туре | α     | β         |
| All     | FTOP     | RPS SS | 9.77E-08 | 1.13E-05 | 2.48E-05 | 9.54E-05  | Beta | 0.500 | 2.013E+04 |

### A-8. CONTROL RODS

The control rod equipment includes the control rod drives (CRDs) and rods (RODs) for PWRs and the hydraulic control units (HCUs) for BWRs. The failure modes for control rod components are listed in Table 139.

| ruere rest reguiphi |              |           |       |                    |
|---------------------|--------------|-----------|-------|--------------------|
| Pooling Group       | Failure Mode | Parameter | Units | Description        |
| All                 | FTOP         | λ         | 1/h   | Fail to operate    |
|                     | SOP          | λ         | 1/h   | Spurious operation |
| HCU                 | FTI          | p         | -     | Failure to Insert  |
|                     |              |           |       |                    |

Table 139. ROD equipment failure modes.

Data for control rod UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the control rod data collection are listed in Table 140 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

Table 140. Control rod systems.

|         |                          | Num     | ber of Compone | nts   |
|---------|--------------------------|---------|----------------|-------|
|         |                          | High/   |                |       |
| Pooling |                          | Unknown | Low            |       |
| Group   | Description              | Demand  | Demand         | Total |
| CRD     | Control rod drive (CRD)  | 1199    |                | 1199  |
|         | CRD Total                | 1199    |                | 1199  |
| HCU     | Control rod drive (CRD)  | 6012    | 370            | 6382  |
|         | Reactor protection (RPS) | 177     |                | 177   |
|         | HCU Total                | 6189    | 370            | 6559  |
| ROD     | Control rod drive (CRD)  | 742     |                | 742   |
|         | Reactor coolant (RCS)    | 106     |                | 106   |
|         | ROD Total                | 848     |                | 848   |
|         | Grand Total              | 8236    | 370            | 8606  |

### A-8.1 Control Rod Drive (CRD)

#### A-8.1.1 Component Description

The control rod drive (CRD) boundary includes the PWR control rod drive mechanism. The failure modes for CRD are listed in Table 139.

#### A-8.1.2 Data Collection and Review

Data for CRD UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. Table 141 summarizes the data from EPIX and used in the CRD analysis.

Table 141. CRD unreliability data.

|         |         |          | Data              | Counts     | 5      | <b>Percent with Failures</b> |        |
|---------|---------|----------|-------------------|------------|--------|------------------------------|--------|
| Pooling | Failure |          | <b>Demands</b> or |            |        |                              |        |
| Group   | Mode    | Failures | Hours             | Components | Plants | Components                   | Plants |
| CRDM    | FTOP    | 19       | 145,016,900 h     | 1,198      | 30     | 1.6%                         | 36.7%  |

|         |         |          | Data              | Counts     | 5      | <b>Percent with Failures</b> |        |
|---------|---------|----------|-------------------|------------|--------|------------------------------|--------|
| Pooling | Failure |          | <b>Demands</b> or |            |        |                              |        |
| Group   | Mode    | Failures | Hours             | Components | Plants | Components                   | Plants |
| CRDM    | SOP     | 23       | 145,016,900 h     | 1,198      | 30     | 1.6%                         | 30.0%  |

#### **Industry-Average Baselines** A-8.1.3

Table 142 lists the industry-average failure rate distribution. These industry-average failure rates do not account for any recovery.

Table 142. Selected industry distributions of p and  $\lambda$  for CRDs.Analysis

|         |         | Analysis |          |          |          |          | Distribut | ion   |          |
|---------|---------|----------|----------|----------|----------|----------|-----------|-------|----------|
| Pooling | Failure | Type /   |          |          |          |          |           |       |          |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре      | α     | β        |
| CRDM    | FTOP    | EB/PL/KS | 1.16E-09 | 8.38E-08 | 1.68E-07 | 6.18E-07 | Gamma     | 0.56  | 3.34E+06 |
| CRDM    | SOP     | JNID/IL  | 1.11E-07 | 1.60E-07 | 1.62E-07 | 2.21E-07 | Gamma     | 23.50 | 1.45E+08 |

### A-8.2 Control Rod (ROD)

### A-8.2.1 Component Description

The control rod (ROD) boundary includes the PWR control rod excluding the drive mechanism. The failure modes for ROD are listed in Table 139.

### A-8.2.2 Data Collection and Review

Data for ROD UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. Table 143 summarizes the data obtained from EPIX and used in the ROD analysis.

Table 143. ROD unreliability data.

|             |         |          | Data          | Counts     | 5      | Percent with Failures |        |
|-------------|---------|----------|---------------|------------|--------|-----------------------|--------|
| Pooling     | Failure |          | Demands or    |            |        |                       |        |
| Group       | Mode    | Failures | Hours         | Components | Plants | Components            | Plants |
| Control Rod | FTOP    | 10       | 110,389,200 h | 844        | 39     | 1.2%                  | 15.4%  |
| Control Rod | SOP     | 11       | 110,389,200 h | 844        | 39     | 1.2%                  | 12.8%  |

### A-8.2.3 Industry-Average Baselines

Table 144 lists the industry-average failure rate distribution. These industry-average failure rates do not account for any recovery.

|                  |                 | Analysis         |          |          |          |          |       | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| Control Rod      | FTOP            | JNID/IL          | 5.27E-08 | 9.24E-08 | 9.51E-08 | 1.49E-07 | Gamma | 10.50     | 1.10E+08 |
| Control Rod      | SOP             | JNID/IL          | 5.95E-08 | 1.02E-07 | 1.04E-07 | 1.60E-07 | Gamma | 11.50     | 1.10E+08 |

Table 144. Selected industry distributions of p and  $\lambda$  for RODs.

# A-8.3 Hydraulic Control Unit (HCU)

### A-8.3.1 Component Description

The hydraulic control unit (HCU) boundary includes the PWR control rod drive mechanism. The failure modes for HCU are listed in Table 139.

### A-8.3.2 Data Collection and Review

Data for HCU UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. Table 145 summarizes the data obtained from EPIX and used in the HCU analysis.

|                  |                 |          | Data                | Counts     | Counts |            | <b>Percent with Failures</b> |  |
|------------------|-----------------|----------|---------------------|------------|--------|------------|------------------------------|--|
| Pooling<br>Group | Failure<br>Mode | Failures | Demands or<br>Hours | Components | Plants | Components | Plants                       |  |
| HCU              | FTI             | -        | -                   | -          | -      | -          | -                            |  |
| HCU              | FTOP            | 19       | 1,347,114,000 h     | 10,425     | 35     | 0.2%       | 42.9%                        |  |
| HCU              | SOP             | 27       | 1,347,114,000 h     | 10,425     | 35     | 0.3%       | 51.4%                        |  |

Table 145. HCU unreliability data.

#### A-8.3.3 Industry-Average Baselines

Table 146 lists the industry-average failure rate distribution. These industry-average failure rates do not account for any recovery.

|                  |                 | Analysis         |          |          |          |          |        | Distributi | on       |
|------------------|-----------------|------------------|----------|----------|----------|----------|--------|------------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре   | α          | β        |
| HCU              | FTI             | RPS SS           | 1.05E-09 | 2.10E-08 | 1.10E-07 | 4.19E-07 | Lognor | 20.00      | -        |
|                  |                 |                  |          |          |          |          | mal    |            |          |
| HCU              | FTOP            | JNID/IL          | 9.52E-09 | 1.42E-08 | 1.45E-08 | 2.02E-08 | Gamma  | 19.50      | 1.35E+09 |
| HCU              | SOP             | EB/PL/KS         | 7.14E-09 | 1.84E-08 | 1.99E-08 | 3.79E-08 | Gamma  | 4.30       | 2.16E+08 |

Table 146. Selected industry distributions of p and  $\lambda$  for HCUs.

### A-9. HEATING AND VENTILATION

The heating and ventilating (HVC) equipment included in this section includes dampers, air-handling units, chillers, and fans. The failure modes for HVC equipment are listed in Table 147.

| Pooling Group | Failure Mode | Parameter | Units | Description                         |
|---------------|--------------|-----------|-------|-------------------------------------|
| All           | FTOC         | р         | -     | Failure to open or failure to close |
|               | SOP          | λ         | 1/h   | Spurious operation                  |
|               | ILS          | λ         | 1/h   | Internal leak small                 |
|               | ILL          | λ         | 1/h   | Internal leak large                 |
|               | FTOP         | λ         | 1/h   | Fail to operate                     |
| Running       | FTS          | р         | -     | Failure to start                    |
| -             | FTR          | λ         | 1/h   | Fail to run                         |
| Standby       | FTS          | р         | -     | Failure to start                    |
|               | FTR≤1H       | λ         | 1/h   | Failure to run for 1 h              |
|               | FTR>1H       | λ         | 1/h   | Fail to run beyond 1 h              |

Table 147. Heating and ventilation equipment failure modes.

### A-9.1 Damper (DMP)

### A-9.1.1 Component Description

The damper (DMP) component boundary includes the valve, the valve operator, and local instrumentation and control circuitry. The failure modes for dampers are listed in Table 147. This section presents results for dampers with pneumatic -operators (AOD), hydraulic-operators (HOD), and motor-operators (MOD).

### A-9.1.2 Data Collection and Review

Data for DMP UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the DMP data collection are listed in Table 148 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 20 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|                  |                                                | Num     | per of Componer | nts   |
|------------------|------------------------------------------------|---------|-----------------|-------|
|                  |                                                | High/   |                 |       |
| Pooling          |                                                | Unknown | Low             |       |
| Group            | Description                                    | Demand  | Demand          | Total |
| AIR              | Chemical and volume control (CVC)              |         | 1               | 1     |
|                  | Containment fan cooling (CFC)                  | 2       | 22              | 24    |
|                  | Emergency power supply (EPS)                   | 1       |                 | 1     |
|                  | Heating ventilation and air conditioning (HVC) | 114     | 59              | 173   |
|                  | High pressure injection (HPI)                  | 1       |                 | 1     |
|                  | Instrument air (IAS)                           | 4       |                 | 4     |
|                  | Plant ac power (ACP)                           | 1       |                 | 1     |
| <b>AIR</b> Total | -                                              | 123     | 82              | 205   |
| HYD              | Containment fan cooling (CFC)                  |         | 4               | 4     |
|                  | dc power (DCP)                                 | 1       |                 | 1     |
|                  | Emergency power supply (EPS)                   | 16      | 8               | 24    |

Table 148. Damper systems.

|         |                                                | Num     | ber of Compone | nts   |
|---------|------------------------------------------------|---------|----------------|-------|
|         |                                                | High/   |                |       |
| Pooling |                                                | Unknown | Low            |       |
| Group   | Description                                    | Demand  | Demand         | Total |
|         | Heating ventilation and air conditioning (HVC) | 55      | 41             | 96    |
| HYD     |                                                | 72      | 53             | 125   |
| Total   |                                                |         |                |       |
| МОТ     | Containment fan cooling (CFC)                  |         | 3              | 3     |
|         | Emergency power supply (EPS)                   | 6       | 16             | 22    |
|         | Engineered safety features actuation (ESF)     |         | 1              | 1     |
|         | Heating ventilation and air conditioning (HVC) | 60      | 3              | 63    |
|         | Standby service water (SSW)                    | 6       |                | 6     |
| МОТ     | •                                              | 72      | 23             | 95    |
| Total   |                                                |         |                |       |
| Grand   |                                                | 267     | 158            | 425   |
| Total   |                                                |         |                |       |

Table 149 summarizes the data used in the DMP analysis. Note that SOP and ILS hours are reactoryear hours.

Table 149. DMP unreliability data.

|                  |                 |        | Data                | Counts     |        | Percent with | Failures |
|------------------|-----------------|--------|---------------------|------------|--------|--------------|----------|
| Pooling<br>Group | Failure<br>Mode | Events | Demands or<br>Hours | Components | Plants | Components   | Plants   |
| Pneumatic        | FTOC            | 0      | 6,602 d             | 50         | 10     | 0.0%         | 0.0%     |
| Pneumatic        | SOP             | 4      | 24,287,000 h        | 207        | 37     | 1.9%         | 8.1%     |
| Pneumatic        | ILS             | 3      | 24,287,000 h        | 207        | 37     | 1.4%         | 5.4%     |
| Pneumatic        | ILL             |        |                     | 207        | 37     |              |          |
| Hydraulic        | FTOC            | 4      | 6,113 d             | 42         | 5      | 9.5%         | 60.0%    |
| Hydraulic        | SOP             | 2      | 16,454,520 h        | 126        | 15     | 1.6%         | 6.7%     |
| Hydraulic        | ILS             | 0      | 16,454,520 h        | 126        | 15     | 0.0%         | 0.0%     |
| Hydraulic        | ILL             |        |                     | 126        | 15     |              |          |
| Motor            | FTOC            | 11     | 28,949 d            | 52         | 10     | 11.5%        | 30.0%    |
| Motor            | SOP             | 0      | 14,134,270 h        | 109        | 22     | 0.0%         | 0.0%     |
| Motor            | ILS             | 0      | 14,134,270 h        | 109        | 22     | 0.0%         | 0.0%     |
| Motor            | ILL             |        |                     | 109        | 22     |              |          |

Figure 24 shows the range of valve demands per year in the DMP data set (limited to low-demand components only).

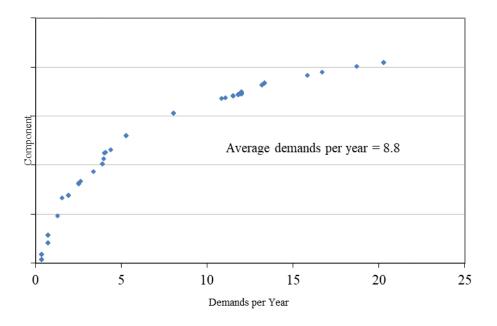



Figure 24. DMP demands per year distribution.

### A-9.1.3 Industry-Average Baselines

Table 150 lists the selected industry distributions of p and  $\lambda$  for the DMP failure modes. These industry-average failure rates do not account for any recovery.

Table 150. Selected industry distributions of p and  $\lambda$  for DMPs.

|                  |                 | Analysis         |          |          |          |          | Ι     | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| Pneumatic        | FTOC            | JNID/IL          | 2.98E-07 | 3.45E-05 | 7.57E-05 | 2.91E-04 | Beta  | 0.50      | 6.60E+03 |
| Pneumatic        | SOP             | EB/PL/KS         | 1.29E-09 | 8.25E-08 | 1.61E-07 | 5.86E-07 | Gamma | 0.58      | 3.60E+06 |
| Pneumatic        | ILS             | JNID/IL          | 4.46E-08 | 1.31E-07 | 1.44E-07 | 2.89E-07 | Gamma | 3.50      | 2.43E+07 |
| Pneumatic        | ILL             |                  | 3.08E-13 | 7.02E-10 | 2.88E-09 | 1.32E-08 | Gamma | 0.30      | 1.04E+08 |
| Hydraulic        | FTOC            | JNID/IL          | 2.72E-04 | 6.82E-04 | 7.36E-04 | 1.38E-03 | Beta  | 4.50      | 6.11E+03 |
| Hydraulic        | SOP             | JNID/IL          | 3.47E-08 | 1.32E-07 | 1.52E-07 | 3.35E-07 | Gamma | 2.50      | 1.65E+07 |
| Hydraulic        | ILS             | JNID/IL          | 1.19E-10 | 1.38E-08 | 3.04E-08 | 1.16E-07 | Gamma | 0.50      | 1.65E+07 |
| Hydraulic        | ILL             |                  | 6.51E-14 | 1.48E-10 | 6.08E-10 | 2.78E-09 | Gamma | 0.30      | 4.93E+08 |
| Motor            | FTOC            | EB/PL/KS         | 1.74E-05 | 2.44E-04 | 3.56E-04 | 1.07E-03 | Beta  | 0.98      | 2.76E+03 |
| Motor            | SOP             | JNID/IL          | 1.39E-10 | 1.61E-08 | 3.54E-08 | 1.36E-07 | Gamma | 0.50      | 1.41E+07 |
| Motor            | ILS             | JNID/IL          | 1.39E-10 | 1.61E-08 | 3.54E-08 | 1.36E-07 | Gamma | 0.50      | 1.41E+07 |
| Motor            | ILL             |                  | 7.58E-14 | 1.73E-10 | 7.08E-10 | 3.24E-09 | Gamma | 0.30      | 4.24E+08 |

### A-9.2 Air Handling Unit (AHU)

### A-9.2.1 Component Description

The air-handling unit (AHU) boundary includes the fan, heat exchanger, valves, control circuitry, and breakers. The failure modes for AHU are listed in Table 147.

### A-9.2.2 Data Collection and Review

Data for AHU UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the AHU data collection are listed in Table 151 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 200 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data (e.g., leakage, SOP, and operation) are available.

60

.

|          |                                                | Num     | ber of Compone | nts   |
|----------|------------------------------------------------|---------|----------------|-------|
|          |                                                | High/   |                |       |
| Pooling  |                                                | Unknown | Low            |       |
| Group    | System                                         | Demand  | Demand         | Total |
| Normally | Auxiliary feedwater (AFW)                      | 3       | 1              | 4     |
| Running  | •                                              |         |                |       |
|          | Circulating water system (CWS)                 | 3       |                | 3     |
|          | Component cooling water (CCW)                  | 37      | 2              | 39    |
|          | Condensate system (CDS)                        | 10      |                | 10    |
|          | Containment fan cooling (CFC)                  | 113     | 58             | 171   |
|          | Containment isolation system (CIS)             | 4       |                | 4     |
|          | Control rod drive (CRD)                        | 14      |                | 14    |
|          | dc power (DCP)                                 | 1       | 2              | 3     |
|          | Emergency power supply (EPS)                   | 95      | 5              | 100   |
|          | Fuel handling (FHS)                            | 4       |                | 4     |
|          | Heating ventilation and air conditioning (HVC) | 1048    | 78             | 1126  |
|          | High pressure coolant injection (HCI)          | 1       |                | 1     |
|          | High pressure injection (HPI)                  | 1       |                | 1     |
|          | Instrument air (IAS)                           | 6       | 2              | 8     |
|          | Main feedwater (MFW)                           | 4       |                | 4     |
|          | Main steam (MSS)                               | 107     |                | 107   |
|          | Plant ac power (ACP)                           | 13      |                | 13    |
|          | Reactor coolant (RCS)                          | 16      |                | 16    |
|          | Reactor protection (RPS)                       | 10      |                | 10    |
|          | Standby service water (SSW)                    | 8       |                | 8     |
|          | Uninterruptable instrument power supply (UPS)  | 10      |                | 10    |
|          | Normally Running Total                         | 1508    | 148            | 1656  |
| Standby  | Chemical and volume control (CVC)              |         | 2              | 2     |
|          | Component cooling water (CCW)                  |         | 1              | 1     |
|          | Containment fan cooling (CFC)                  | 1       | 60             | 61    |
|          | Containment spray recirculation (CSR)          |         | 2              | 2     |
|          | Emergency power supply (EPS)                   |         | 57             | 57    |
|          | Heating ventilation and air conditioning (HVC) | 3       | 240            | 243   |
|          | High pressure injection (HPI)                  |         | 2              | 2     |

#### Table 151. AHU systems.

|         |                                            | Number of Components |        |       |  |  |
|---------|--------------------------------------------|----------------------|--------|-------|--|--|
|         |                                            | High/                |        |       |  |  |
| Pooling |                                            | Unknown              | Low    |       |  |  |
| Group   | System                                     | Demand               | Demand | Total |  |  |
|         | Residual Heat Removal (LCI in BWRs, LPI in |                      | 4      | 4     |  |  |
|         | PWRs) (RHR)                                |                      |        |       |  |  |
|         | Standby service water (SSW)                |                      | 6      | 6     |  |  |
|         | Standby Total                              | 4                    | 374    | 378   |  |  |
|         | Grand Total                                | 1512                 | 522    | 2034  |  |  |

Table 152 summarizes the data obtained from EPIX and used in the AHU analysis.

|         |         | ]        | Data         |            | 5      | <b>Percent with Failures</b> |        |
|---------|---------|----------|--------------|------------|--------|------------------------------|--------|
| Pooling | Failure |          | Demands or   |            |        |                              |        |
| Group   | Mode    | Failures | Hours        | Components | Plants | Components                   | Plants |
| NR      | FTS     | 23       | 15,981 d     | 145        | 35     | 12.4%                        | 22.9%  |
| NR      | FTR     | 39       | 15,131,330 h | 145        | 35     | 17.2%                        | 51.4%  |
| STBY    | FTS     | 33       | 158,866 d    | 403        | 51     | 7.2%                         | 31.4%  |
| STBY    | FTR<1H  | 0        | 147,963 h    | 395        | 51     | 0.0%                         | 0.0%   |
| STBY    | FTR>1H  | 27       | 9,928,068 h  | 403        | 51     | 5.7%                         | 25.5%  |

Table 152. AHU unreliability data.

Figure 25 shows the range of start demands per year in the standby AHU data set. Figure 26 shows the range of run hours per demand in the standby AHU data set. Figure 26 shows the range of run hours per demand in the running AHU data set.

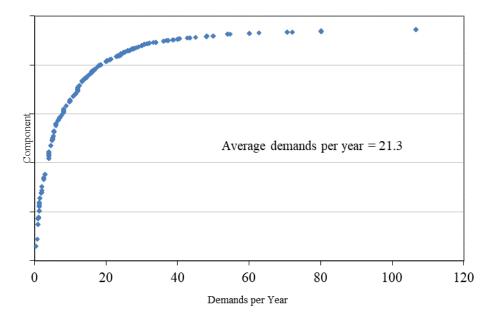



Figure 25. AHU demands per year distribution.

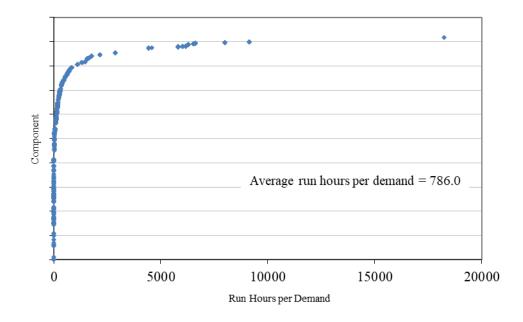



Figure 26. AHU run hours per demand distribution.

### A-9.2.3 Industry-Average Baselines

Table 153 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

Table 153. Selected industry distributions of p and  $\lambda$  for AHUs.

|         |         | Analysis |          |          |          |          |       | Distribution |          |  |
|---------|---------|----------|----------|----------|----------|----------|-------|--------------|----------|--|
| Pooling | Failure | Type /   |          |          |          |          |       |              |          |  |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре  | α            | β        |  |
| NR      | FTS     | JNID/IL  | 1.01E-03 | 1.45E-03 | 1.47E-03 | 2.00E-03 | Beta  | 23.50        | 1.60E+04 |  |
| NR      | FTR     | JNID/IL  | 1.97E-06 | 2.59E-06 | 2.61E-06 | 3.34E-06 | Gamma | 39.50        | 1.51E+07 |  |
| STBY    | FTS     | JNID/IL  | 1.55E-04 | 2.09E-04 | 2.11E-04 | 2.74E-04 | Beta  | 33.50        | 1.59E+05 |  |
| STBY    | FTR<1H  | JNID/IL  | 1.33E-08 | 1.54E-06 | 3.38E-06 | 1.30E-05 | Gamma | 0.50         | 1.48E+05 |  |
| STBY    | FTR>1H  | JNID/IL  | 1.96E-06 | 2.74E-06 | 2.77E-06 | 3.69E-06 | Gamma | 27.50        | 9.93E+06 |  |

### A-9.3 Chiller (CHL)

### A-9.3.1 Component Description

The chiller (CHL) boundary includes the compressor, motor, local circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for CHL are listed in Table 147.

### A-9.3.2 Data Collection and Review

Data for CHL UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the CHL data collection are listed in Table 154 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 200 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|          |                                                | Num     | ber of Compone | nts    |  |
|----------|------------------------------------------------|---------|----------------|--------|--|
|          |                                                | High/   | -              |        |  |
| Pooling  |                                                | Unknown | Low            |        |  |
| Group    | System                                         | Demand  | Demand         | Total  |  |
| Normally | Chilled water system (CHW)                     | 115     | 25             | 140    |  |
| Running  |                                                |         |                |        |  |
| _        | Component cooling water (CCW)                  | 23      | 3              | 26     |  |
|          | Containment isolation system (CIS)             | 6       | 1              | 7      |  |
|          | Containment spray recirculation (CSR)          | 31      |                | 31     |  |
|          | Emergency power supply (EPS)                   | 58      | 3              | 61     |  |
|          | Heating ventilation and air conditioning (HVC) | 93      | 56             | 149    |  |
|          | High pressure core spray (HCS)                 | 1       |                | 1      |  |
|          | Instrument air (IAS)                           |         | 2              | 2      |  |
|          | Main steam (MSS)                               | 3       |                | 2<br>3 |  |
|          | Normally operating service water (SWN)         | 10      | 6              | 16     |  |
|          | Offsite electrical power (OEP)                 |         | 1              | 1      |  |
|          | Plant ac power (ACP)                           | 19      | 31             | 50     |  |
|          | Reactor protection (RPS)                       | 2       |                | 2      |  |
|          | Standby service water (SSW)                    | 48      | 20             | 68     |  |
|          | Residual Heat Removal (LCI in BWRs; LPI in     | 1       |                | 1      |  |
|          | PWRs) (RHR)                                    |         |                |        |  |
|          | Normally Running Total                         | 410     | 148            | 558    |  |
| Standby  | Chilled water system (CHW)                     |         | 5              | 5      |  |
| -        | Heating ventilation and air conditioning (HVC) | 2       | 57             | 59     |  |
|          | Instrument air (IAS)                           |         | 1              | 1      |  |
|          | Standby Total                                  | 2       | 63             | 65     |  |
|          | Grand Total                                    | 412     | 211            | 623    |  |

Table 154. CHL systems.

Table 155 summarizes the data obtained from EPIX and used in the CHL analysis.

|         |         | I        | Data        | Counts     |        | Percent with Failures |        |  |
|---------|---------|----------|-------------|------------|--------|-----------------------|--------|--|
| Pooling | Failure |          | Demands or  |            |        |                       |        |  |
| Group   | Mode    | Failures | Hours       | Components | Plants | Components            | Plants |  |
| NR      | FTS     | 66       | 21,137 d    | 92         | 23     | 30.4%                 | 60.9%  |  |
| NR      | FTR     | 179      | 7,250,769 h | 92         | 23     | 42.4%                 | 78.3%  |  |
| STBY    | FTS     | 0        | 18,006 d    | 64         | 11     | 0.0%                  | 0.0%   |  |
| STBY    | FTR<1H  | 34       | 233,781 h   | 64         | 11     | 23.4%                 | 81.8%  |  |
| STBY    | FTR>1H  | 34       | 233,781 h   | 64         | 11     | 23.4%                 | 81.8%  |  |

Table 155. CHL unreliability data.

Figure 27 shows the range of start demands per year in the standby CHL data set. Figure 28 shows the range of run hours per demand in the standby CHL data set.

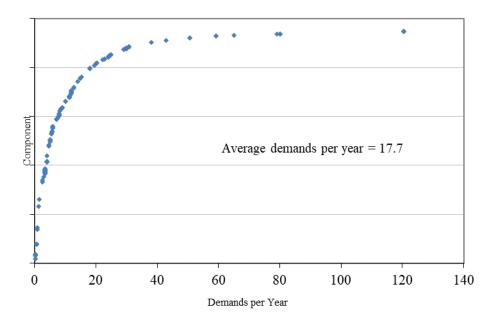
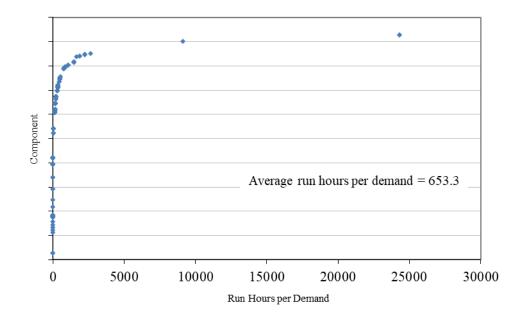
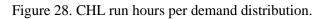





Figure 27. CHL demands per year distribution.





### A-9.3.3 Industry-Average Baselines

Table 156 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

Table 156. Selected industry distributions of p and  $\lambda$  for CHLs.

| Pooling | Failure | Analysis<br>Type / |          |          |          |          |       | Distribut | ion        |
|---------|---------|--------------------|----------|----------|----------|----------|-------|-----------|------------|
| Group   | Mode    | Source             | 5%       | Median   | Mean     | 95%      | Туре  | α         | β          |
| NR      | FTS     | EB/PL/KS           | 9.52E-06 | 2.05E-03 | 5.09E-03 | 2.05E-02 | Beta  | 0.44      | 8.56E+01   |
| NR      | FTR     | EB/PL/KS           | 1.94E-07 | 1.84E-05 | 3.87E-05 | 1.47E-04 | Gamma | 0.52      | 1.35E+04   |
| STBY    | FTS     | JNID/IL            | 1.09E-07 | 1.26E-05 | 2.78E-05 | 1.07E-04 | Beta  | 0.50      | 1.80E + 04 |
| STBY    | FTR<1H  | JNID/IL            | 1.09E-04 | 1.46E-04 | 1.48E-04 | 1.91E-04 | Gamma | 34.50     | 2.34E+05   |
| STBY    | FTR>1H  | JNID/IL            | 1.09E-04 | 1.46E-04 | 1.48E-04 | 1.91E-04 | Gamma | 34.50     | 2.34E+05   |

# A-9.4 Fan (FAN)

### A-9.4.1 Component Description

The fan (FAN) boundary includes the fan, motor, local circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for FAN are listed in Table 147.

### A-9.4.2 Data Collection and Review

Data for FAN UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the FAN data collection are listed in Table 157 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 200 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

**Number of Components** High/ Pooling Unknown Low Group Demand System Demand Total Normally Circulating water system (CWS) 3 3 Running Component cooling water (CCW) 3 3 Condensate system (CDS) 2 2 Containment fan cooling (CFC) 47 90 43 Containment isolation system (CIS) 1 1 3 Containment spray recirculation (CSR) 3 Control rod drive (CRD) 14 2 16 dc power (DCP) 2 3 1 Emergency power supply (EPS) 98 30 128 Engineered safety features actuation (ESF) 1 1 Heating ventilation and air conditioning (HVC) 551 141 692 High pressure coolant injection (HCI) 20 20 10 21 Instrument air (IAS) 11 2 Main feedwater (MFW) 2 Main steam (MSS) 10 10 Normally operating service water (SWN) 8 8 8 Plant ac power (ACP) 8 Reactor coolant (RCS) 2 2 Reactor protection (RPS) 8 8 Standby service water (SSW) 3 3 Vapor suppression (VSS) 1 1 **Normally Running Total** 784 241 1025 Standby Component cooling water (CCW) 7 2 9 Containment fan cooling (CFC) 1 1 72 Emergency power supply (EPS) 72 Heating ventilation and air conditioning (HVC) 44 44 2 High pressure coolant injection (HCI) 2 Instrument air (IAS) 4 4 Normally operating service water (SWN) 1 1

Table 157. FAN systems.

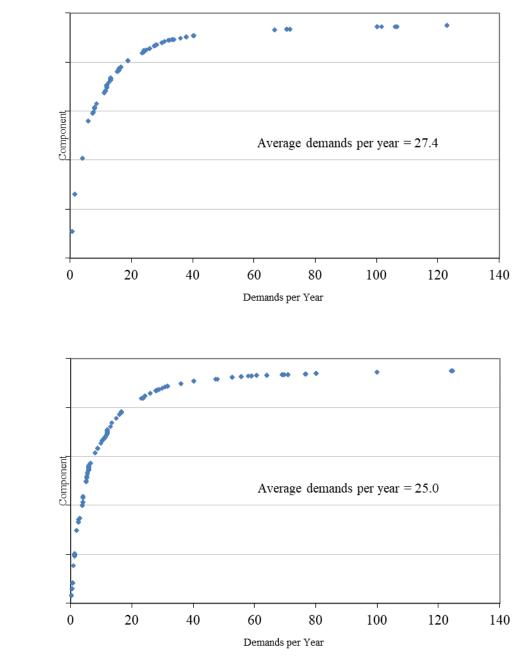

|             |                                            | Number of Components |        |       |  |  |  |
|-------------|--------------------------------------------|----------------------|--------|-------|--|--|--|
| <b>D</b> 1' |                                            | High/                | Ŧ      |       |  |  |  |
| Pooling     |                                            | Unknown              | Low    |       |  |  |  |
| Group       | System                                     | Demand               | Demand | Total |  |  |  |
|             | Residual Heat Removal (LCI in BWRs, LPI in |                      | 1      | 1     |  |  |  |
|             | PWRs) (RHR)                                |                      |        |       |  |  |  |
|             | Standby Total                              | 7                    | 127    | 134   |  |  |  |
|             | Grand Total                                | 791                  | 368    | 1159  |  |  |  |

Table 158 summarizes the data obtained from EPIX and used in the FAN analysis.

|         |         | ]        | Data              | Counts | 5      | Percent with Failures |        |
|---------|---------|----------|-------------------|--------|--------|-----------------------|--------|
| Pooling | Failure |          | <b>Demands</b> or |        |        |                       |        |
| Group   | Mode    | Failures | Failures Hours C  |        | Plants | Components            | Plants |
| NR      | FTS     | 28       | 87,323 d          | 233    | 34     | 8.6%                  | 38.2%  |
| NR      | FTR     | 50       | 16,050,850 h      | 233    | 34     | 15.5%                 | 47.1%  |
| STBY    | FTS     | 17       | 63,511 d          | 154    | 37     | 9.1%                  | 29.7%  |
| STBY    | FTR<1H  | 17       | 39,405 h          | 133    | 33     | 6.8%                  | 18.2%  |
| STBY    | FTR>1H  | 3        | 120,200 h         | 154    | 37     | 1.9%                  | 5.4%   |

Table 158. FAN unreliability data.

Figure 29a shows the range of start demands per year in the standby FAN data set. Figure 29b shows the range of start demands per year in the running FAN data set. Figure 30a shows the range of run hours per demand in the standby FAN data set. Figure 30b shows the range of run hours per demands in the running FAN data set.



b.

a.

Figure 29. a. Standby FAN demands per year distribution. b. Running/alternating FAN demands per year distribution.

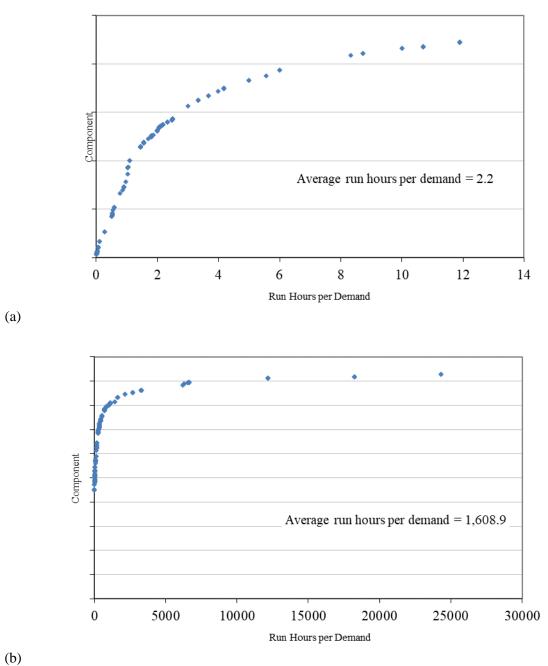



Figure 30. a. Standby FAN run hours per demand distribution. b. Running/alternating FAN run hours per demand distribution.

### A-9.4.3 Industry-Average Baselines

Table 159 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

|         |         | Analysis |          |          |          |          | Distribution |       |          |  |
|---------|---------|----------|----------|----------|----------|----------|--------------|-------|----------|--|
| Pooling | Failure | Type /   | 50/      |          |          | 050/     | T            |       | 0        |  |
| Group   | Mode    | Source   | 5%       | Median   | Mean     | 95%      | Туре         | α     | β        |  |
| NR      | FTS     | EB/PL/KS | 1.69E-06 | 2.99E-04 | 7.15E-04 | 2.84E-03 | Beta         | 0.46  | 6.36E+02 |  |
| NR      | FTR     | EB/PL/KS | 4.87E-08 | 1.83E-06 | 3.23E-06 | 1.11E-05 | Gamma        | 0.67  | 2.09E+05 |  |
| STBY    | FTS     | JNID/IL  | 1.77E-04 | 2.70E-04 | 2.76E-04 | 3.92E-04 | Beta         | 17.50 | 6.35E+04 |  |
| STBY    | FTR<1H  | JNID/IL  | 2.85E-04 | 4.36E-04 | 4.44E-04 | 6.32E-04 | Gamma        | 17.50 | 3.94E+04 |  |
| STBY    | FTR>1H  | JNID/IL  | 9.03E-06 | 2.64E-05 | 2.91E-05 | 5.86E-05 | Gamma        | 3.50  | 1.20E+05 |  |

Table 159. Selected industry distributions of p and  $\lambda$  for FANs.

### A-10. MISCELLANEOUS EQUIPMENT

This section presents reliability data on equipment that does not fall under the other major groupings. The failure modes applicable to these equipment are listed in Table 160.

The selected ELL mean is the ELS mean multiplied by 0.07, with an assumed  $\alpha$  of 0.3. The selected ILL mean is the ILS mean multiplied by 0.02, with an assumed  $\alpha$  of 0.3. The 0.07 and 0.02 multipliers are based on limited EPIX data for large leaks as explained in Section A.1 in NUREG/CR-6928.

| Pooling Group | Failure Mode | Parameter       | Units | Description                         |
|---------------|--------------|-----------------|-------|-------------------------------------|
| All           | FTOC         | р               | -     | Failure to open or failure to close |
|               | SOP          | λ               | 1/h   | Spurious operation                  |
|               | ILS          | λ               | 1/h   | Internal leak small                 |
|               | ILL          | λ               | 1/h   | Internal leak large                 |
|               | ELS          | λ               | 1/h   | External leak small                 |
|               | ELL          | λ               | 1/h   | External leak large                 |
|               | FTOP         | λ               | 1/h   | Fail to operate                     |
| Running       | FTS          | р               | -     | Failure to start                    |
|               | FTR          | λ               | 1/h   | Fail to run                         |
| Standby       | FTS          | р               | -     | Failure to start                    |
| -             | FTR≤1H       | $\bar{\lambda}$ | 1/h   | Failure to run for 1 h              |
|               | FTR>1H       | λ               | 1/h   | Fail to run beyond 1 h              |

Table 160. Failure modes applicable to miscellaneous equipment

### A-10.1 Air Compressor (CMP)

#### A-10.1.1 Component Description

The air compressor (CMP) boundary includes the compressor, driver, local circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for CMP are listed in Table 160. This section presents results for both the motor-driven (MDC) and enginedriven (EDC) air compressors.

#### A-10.1.2 Data Collection and Review

Data for CMP UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the compressor data collection are listed in Table 161 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be 200 or fewer demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|                                  | Number of Components                                                                 |                                                                                                               |                                                                                                                 |  |  |  |
|----------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
|                                  | High/                                                                                |                                                                                                               |                                                                                                                 |  |  |  |
|                                  | Unknown                                                                              | Low                                                                                                           |                                                                                                                 |  |  |  |
| System                           | Demand                                                                               | Demand                                                                                                        | Total                                                                                                           |  |  |  |
| Containment Instrument Air (CIA) | 9                                                                                    |                                                                                                               | 9                                                                                                               |  |  |  |
| Instrument air (IAS)             | 58                                                                                   | 92                                                                                                            | 150                                                                                                             |  |  |  |
| Service Air System (SAS)         | 22                                                                                   | 36                                                                                                            | 58                                                                                                              |  |  |  |
| MOTOR Total                      | 89                                                                                   | 128                                                                                                           | 217                                                                                                             |  |  |  |
|                                  | Containment Instrument Air (CIA)<br>Instrument air (IAS)<br>Service Air System (SAS) | High/<br>UnknownSystemDemandContainment Instrument Air (CIA)9Instrument air (IAS)58Service Air System (SAS)22 | High/<br>UnknownSystemDemandContainment Instrument Air (CIA)9Instrument air (IAS)58Service Air System (SAS)2236 |  |  |  |

#### Table 161. CMP systems.

|         |                          | Number of Components |        |       |  |  |  |  |
|---------|--------------------------|----------------------|--------|-------|--|--|--|--|
| Pooling |                          | High/<br>Unknown     | Low    |       |  |  |  |  |
| Group   | System                   | Demand               | Demand | Total |  |  |  |  |
| Engine- | Instrument air (IAS)     | 4                    | 3      | 7     |  |  |  |  |
| Driven  | Service Air System (SAS) | 2                    | 2      | 4     |  |  |  |  |
|         | ENGINE Total             | 6                    | 5      | 11    |  |  |  |  |
|         | Grand Total              | 95                   | 133    | 228   |  |  |  |  |

Table 162 summarizes the data obtained from EPIX and used in the CMP analysis.

|          |         | Ι        | Data        | Count      | S      | Percent with | Failures |
|----------|---------|----------|-------------|------------|--------|--------------|----------|
| Pooling  | Failure |          | Demands or  |            |        |              |          |
| Group    | Mode    | Failures | Hours       | Components | Plants | Components   | Plants   |
| MDC-NR   | FTS     | 52       | 7,855 d     | 65         | 28     | 43.1%        | 64.3%    |
| MDC-NR   | FTR     | 173      | 4,802,083 h | 65         | 28     | 80.0%        | 100.0%   |
| MDC-STBY | FTS     | 34       | 21,074 d    | 57         | 20     | 43.9%        | 80.0%    |
| MDC-STBY | FTR<1H  | 1        | 20,248 h    | 54         | 20     | 1.9%         | 5.0%     |
| MDC-STBY | FTR>1H  | 90       | 1,573,366 h | 57         | 20     | 61.4%        | 90.0%    |
| EDC-STBY | FTS     | 14       | 1,459 d     | 4          | 4      | 50.0%        | 50.0%    |
| EDC-STBY | FTR<1H  | 1        | 1,459 h     | 4          | 4      | 25.0%        | 25.0%    |
| EDC-STBY | FTR>1H  | 12       | 1,609 h     | 4          | 4      | 75.0%        | 75.0%    |
| EDC-NR   | FTR     | 10       | 163,321 h   | 3          | 3      | 100.0%       | 100.0%   |
| MDC-IAS  | FTR     | 117      | 2,376,803 h | 36         | 15     | 88.9%        | 100.0%   |
| MDC-CIA  | FTR     | 0        | 98,561 h    | 2          | 1      | 0.0%         | 0.0%     |

Table 162. CMP unreliability data.

Figure 31 shows the range of start demands per year in the CMP data set. Figure 32 shows the range of run hours per demand in the CMP data set.

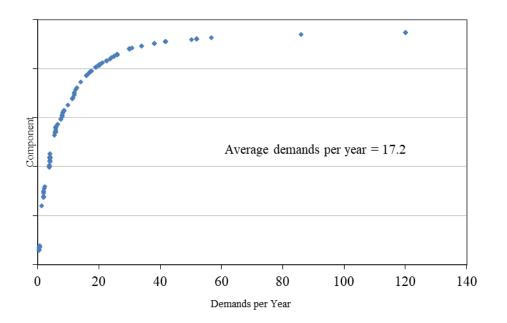



Figure 31. CMP demands per year distribution.

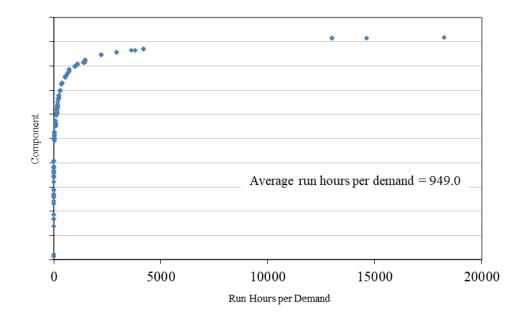



Figure 32. CMP run hours per demand distribution.

### A-10.1.3 Industry-Average Baselines

Table 163 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

Table 163. Selected industry distributions of p and  $\lambda$  for CMPs.

| Pooling  | Failure | Analysis<br>Type / |          |          |          |          | Distribution |       |          |  |
|----------|---------|--------------------|----------|----------|----------|----------|--------------|-------|----------|--|
| Group    | Mode    | Source             | 5%       | Median   | Mean     | 95%      | Туре         | α     | β        |  |
| MDC-NR   | FTS     | EB/PL/KS           | 3.28E-05 | 5.78E-03 | 1.36E-02 | 5.36E-02 | Beta         | 0.46  | 3.31E+01 |  |
| MDC-NR   | FTR     | EB/PL/KS           | 9.92E-06 | 3.54E-05 | 4.03E-05 | 8.72E-05 | Gamma        | 2.69  | 6.68E+04 |  |
| MDC-STBY | FTS     | EB/PL/KS           | 9.56E-05 | 1.89E-03 | 2.93E-03 | 9.27E-03 | Beta         | 0.85  | 2.89E+02 |  |
| MDC-STBY | FTR<1H  | JNID/IL            | 8.71E-06 | 5.86E-05 | 7.41E-05 | 1.93E-04 | Gamma        | 1.50  | 2.02E+04 |  |
| MDC-STBY | FTR>1H  | JNID/IL            | 4.81E-05 | 5.74E-05 | 5.75E-05 | 6.80E-05 | Gamma        | 90.50 | 1.57E+06 |  |
| EDC-STBY | FTS     | JNID/IL            | 6.06E-03 | 9.68E-03 | 9.93E-03 | 1.45E-02 | Beta         | 14.50 | 1.45E+03 |  |
| EDC-STBY | FTR<1H  | JNID/IL            | 1.20E-04 | 8.10E-04 | 1.03E-03 | 2.68E-03 | Gamma        | 1.50  | 1.46E+03 |  |
| EDC-STBY | FTR>1H  | JNID/IL            | 4.54E-03 | 7.56E-03 | 7.77E-03 | 1.17E-02 | Gamma        | 12.50 | 1.61E+03 |  |
| EDC-NR   | FTR     | JNID/IL            | 3.56E-05 | 6.24E-05 | 6.43E-05 | 1.00E-04 | Gamma        | 10.50 | 1.63E+05 |  |
| MDC-IAS  | FTR     | EB/PL/KS           | 2.41E-05 | 4.73E-05 | 4.93E-05 | 8.22E-05 | Gamma        | 7.62  | 1.54E+05 |  |
| MDC-CIA  | FTR     | JNID/IL            | 1.99E-08 | 2.31E-06 | 5.07E-06 | 1.95E-05 | Gamma        | 0.50  | 9.86E+04 |  |

### A-10.2 Air Dryer Unit (ADU)

### A-10.2.1 Component Description

The air dryer unit (ADU) boundary includes the air dryer unit. The failure mode for ADU is listed in Table 160.

#### A-10.2.2 Data Collection and Review

Data for the ADU UR baseline were obtained from the Westinghouse Savannah River Company (WSRC) database. None of the data sources used in WSRC are newer than approximately 1990. WSRC presents Category 1 data (see Section A.1 in NUREG/CR-6928) from compressed gas systems for ADUs in commercial NPPs.

#### A-10.2.3 Industry-Average Baselines

Table 164 lists the industry-average failure rate distribution. The FTOP failure mode is not supported by EPIX data. The mean is from WSRC, and the  $\alpha$  parameter of 0.30 is assumed.

| rubic ron beleeted maaba j abaroations of p and r for the ob. | Table 164 | . Selected industry | y distributions of | p and $\lambda$ for ADUs. |
|---------------------------------------------------------------|-----------|---------------------|--------------------|---------------------------|
|---------------------------------------------------------------|-----------|---------------------|--------------------|---------------------------|

|                  |                 | Analysis         |          |          |          |          |       | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| IAS              | FTOP            | WSRC             | 5.35E-10 | 1.22E-06 | 5.00E-06 | 2.29E-05 | Gamma | 0.30      | 6.00E+04 |

### A-10.3 Accumulator (ACC)

### A-10.3.1 Component Description

The air accumulator (ACC) boundary includes the tank and associated relief valves. The failure modes for ACC are listed in Table 160.

#### A-10.3.2 Data Collection and Review

Data for ACC UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the ACC data collection are listed in Table 165 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|         |                                                | Num     | ber of Compon | ents  |
|---------|------------------------------------------------|---------|---------------|-------|
|         |                                                | High/   | -             |       |
| Pooling |                                                | Unknown | Low           |       |
| Group   | System                                         | Demand  | Demand        | Total |
| All     | Auxiliary feedwater (AFW)                      | 4       |               | 4     |
|         | Chemical and volume control (CVC)              | 60      |               | 60    |
|         | Component cooling water (CCW)                  | 46      |               | 46    |
|         | Condensate system (CDS)                        | 10      |               | 10    |
|         | Condensate transfer system (CTS)               | 3       |               | 3     |
|         | Containment spray recirculation (CSR)          | 23      |               | 23    |
|         | Control rod drive (CRD)                        | 5       |               | 5     |
|         | Emergency power supply (EPS)                   | 184     |               | 184   |
|         | Firewater (FWS)                                | 11      |               | 11    |
|         | Fuel handling (FHS)                            | 18      |               | 18    |
|         | Heating ventilation and air conditioning (HVC) | 3       |               | 3     |
|         | High pressure coolant injection (HCI)          | 4       |               | 4     |
|         | High pressure core spray (HCS)                 | 1       |               | 1     |
|         | High pressure injection (HPI)                  | 54      |               | 54    |
|         | Instrument air (IAS)                           | 95      |               | 95    |
|         | Main steam (MSS)                               | 43      |               | 43    |
|         | Plant ac power (ACP)                           | 1       |               | 1     |
|         | Reactor coolant (RCS)                          | 2       |               | 2     |
|         | Residual Heat Removal (LCI in BWRs, LPI in     | 71      |               | 71    |
|         | PWRs) (RHR)                                    |         |               |       |
|         | Standby liquid control (SLC)                   | 33      |               | 33    |
|         | Standby service water (SSW)                    | 4       |               | 4     |
|         | Vapor suppression (VSS)                        | 2       |               | 2     |
|         | Grand Total                                    | 677     |               | 677   |

Table 165. ACC systems.

Table 166 summarizes the data obtained from EPIX and used in the ACC analysis.

|         |         |        | Data         | Counts     |        | <b>Percent with Failures</b> |        |
|---------|---------|--------|--------------|------------|--------|------------------------------|--------|
| Pooling | Failure |        | Demands or   |            |        |                              |        |
| Group   | Mode    | Events | Hours        | Components | Plants | Components                   | Plants |
| -       | FTOP    | 11     | 79,315,180 h | 617        | 79     | 1.8%                         | 11.4%  |
| -       | ELS     | 8      | 79,315,180 h | 617        | 79     | 1.3%                         | 7.6%   |
|         | ELL     |        |              | 617        | 79     |                              |        |

Table 166. ACC unreliability data.

#### A-10.3.3 Industry-Average Baselines

Table 167 lists the industry-average failure rate distributions. The selected ELL mean is the ELS mean multiplied by 0.07, with an assumed  $\alpha$  of 0.3. The 0.07 multiplier is based on limited EPIX data for large leaks as explained in Section A.1 in NUREG/CR-6928.

Table 167. Selected industry distributions of p and  $\lambda$  for ACCs.

| Pooling | Failure | Analysis    |          |          |          |          | I     | Distribut | ion      |
|---------|---------|-------------|----------|----------|----------|----------|-------|-----------|----------|
| Group   | Mode    | Type/Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| -       | FTOP    | JNID/IL     | 8.25E-08 | 1.41E-07 | 1.45E-07 | 2.22E-07 | Gamma | 11.50     | 7.93E+07 |
| -       | ELS     | JNID/IL     | 5.47E-08 | 1.03E-07 | 1.07E-07 | 1.74E-07 | Gamma | 8.50      | 7.93E+07 |
| -       | ELL     |             | 8.02E-13 | 1.83E-09 | 7.49E-09 | 3.43E-08 | Gamma | 0.30      | 4.01E+07 |

# A-10.4 COOLING TOWER FAN (CTF)

### A-10.4.1 Component Description

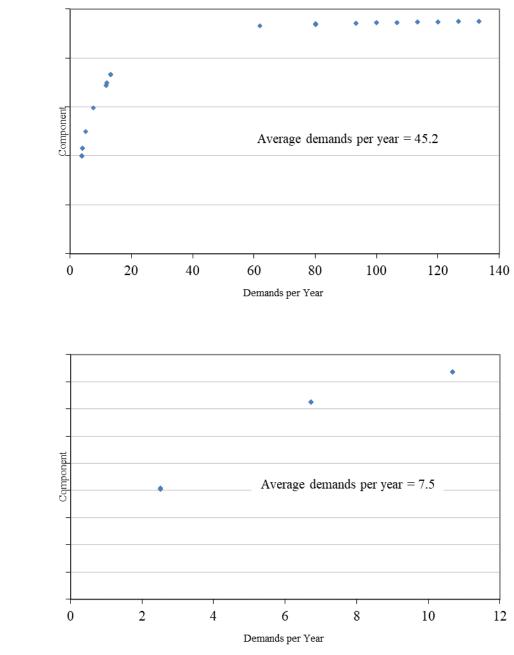
The cooling tower fan (CTF) boundary includes the fan, motor, local circuit breaker, local lubrication or cooling systems, and local instrumentation and control circuitry. The failure modes for CTF are listed in Table 160.

### A-10.4.2 Data Collection and Review

Data for CTF UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems included in the CTF data collection are listed in Table 168 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq$ 200 demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|          |                                        | Number of Components |        |       |  |  |
|----------|----------------------------------------|----------------------|--------|-------|--|--|
|          |                                        | High/                |        |       |  |  |
| Pooling  |                                        | Unknown              | Low    |       |  |  |
| Group    | System                                 | Demand               | Demand | Total |  |  |
| Normally | Circulating water system (CWS)         | 1                    |        | 1     |  |  |
| Running  |                                        |                      |        |       |  |  |
| -        | Normally operating service water (SWN) |                      | 16     | 16    |  |  |
|          | Standby service water (SSW)            | 10                   | 5      | 15    |  |  |
|          | Normally Running Total                 | 11                   | 21     | 32    |  |  |
| Standby  | Circulating water system (CWS)         |                      | 1      | 1     |  |  |
| -        | Component cooling water (CCW)          | 16                   | 17     | 33    |  |  |
|          | Normally operating service water (SWN) |                      | 4      | 4     |  |  |
|          | Standby service water (SSW)            |                      | 24     | 24    |  |  |
|          | Standby Total                          | 16                   | 46     | 62    |  |  |
|          | Grand Total                            | 27                   | 67     | 94    |  |  |

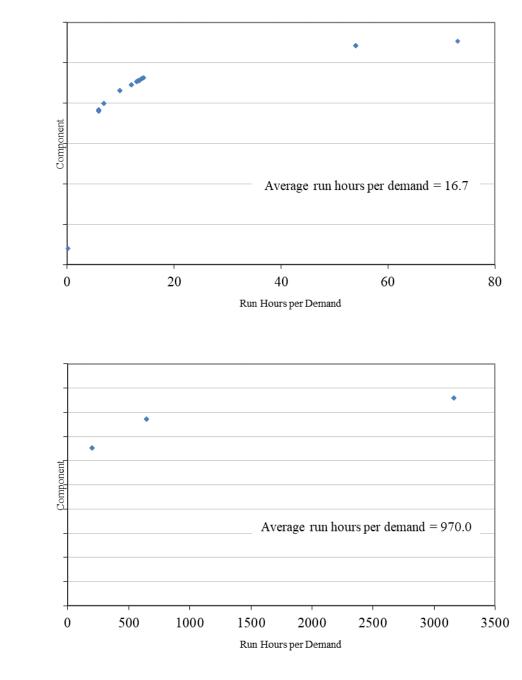
Table 168. CTF systems.


Table 169 summarizes the data obtained from EPIX and used in the CTF analysis. Note that for the running/alternating CTFs, those components with fewer than 200 demands/year were removed.

|                  |                 | Ľ        | Data                |            | Counts |            | Percent with Failures |  |
|------------------|-----------------|----------|---------------------|------------|--------|------------|-----------------------|--|
| Pooling<br>Group | Failure<br>Mode | Failures | Demands or<br>Hours | Components | Plants | Components | Plants                |  |
| STBY             | FTS             | 14       | 37,307 d            | 55         | 6      | 21.8%      | 66.7%                 |  |
| STBY             | FTR<1H          | 0        | 37,231 h            | 54         | 6      | 0.0%       | 0.0%                  |  |
| STBY             | FTR>1H          | 0        | 895,323 h           | 55         | 6      | 0.0%       | 0.0%                  |  |
| NR               | FTS             | 1        | 2,239 d             | 20         | 2      | 5.0%       | 50.0%                 |  |
| NR               | FTR             | 6        | 1,253,930 h         | 20         | 2      | 25.0%      | 100.0%                |  |

Table 169. CTF unreliability data.

Figure 33a shows the range of start demands per year in the standby CTF data set. Figure 33b shows the range of start demands per year in the running CTF data set. Figure 34a shows the range of run hours


per demand in the standby CTF data set. Figure 34b shows the range of run hours per demands in the running CTF data set.



b.

a.

Figure 33. a. Standby CTF demands per year distribution. b. Running/alternating CTF demands per year distribution.





a.

Figure 34. a. Standby CTF run hours per demand distribution. b. Running/alternating CTF run hours per demand distribution.

### A-10.4.3 Industry-Average Baselines

Table 170 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

|                  |                 | Analysis         |          |          |          |          |       | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
| STBY             | FTS             | JNID/IL          | 2.37E-04 | 3.80E-04 | 3.89E-04 | 5.70E-04 | Beta  | 14.50     | 3.73E+04 |
| STBY             | FTR<1H          | JNID/IL          | 5.29E-08 | 6.11E-06 | 1.34E-05 | 5.16E-05 | Gamma | 0.50      | 3.72E+04 |
| STBY             | FTR>1H          | JNID/IL          | 2.20E-09 | 2.54E-07 | 5.58E-07 | 2.15E-06 | Gamma | 0.50      | 8.95E+05 |
| NR               | FTS             | JNID/IL          | 7.85E-05 | 5.28E-04 | 6.70E-04 | 1.74E-03 | Beta  | 1.50      | 2.24E+03 |
| NR               | FTR             | JNID/IL          | 2.36E-06 | 4.94E-06 | 5.18E-06 | 8.94E-06 | Gamma | 6.50      | 1.25E+06 |

Table 170. Selected industry distributions of p and  $\lambda$  for CTFs.

# A-10.5 Tank (TNK)

#### A-10.5.1 Component Description

The tank (TNK) boundary includes the tank. The tank component has been further divided into tanks that hold pressurized liquid, unpressurized liquid, and gas. The failure modes for TNK are listed in Table 160.

### A-10.5.2 Data Collection and Review

Data for TNK UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. These data were then further partitioned into pressurized and unpressurized components. The systems and operational status included in the TNK data collection are listed in Table 171 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be 20 or fewer demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|                      | ·                                                      | Numb    | er of Compone | ents  |
|----------------------|--------------------------------------------------------|---------|---------------|-------|
|                      |                                                        | High/   | -             |       |
|                      |                                                        | Unknown | Low           |       |
| <b>Pooling Group</b> | System                                                 | Demand  | Demand        | Total |
| Liquid,              | Auxiliary feedwater (AFW)                              | 16      |               | 16    |
| Unpressurized        | Chemical and volume control (CVC)                      | 29      |               | 29    |
|                      | Component cooling water (CCW)                          | 30      |               | 30    |
|                      | Condensate system (CDS)                                | 16      |               | 16    |
|                      | Condensate transfer system (CTS)                       | 15      |               | 15    |
|                      | Containment spray recirculation (CSR)                  | 12      |               | 12    |
|                      | Emergency power supply (EPS)                           | 42      |               | 42    |
|                      | Firewater (FWS)                                        | 3       |               | 3     |
|                      | Fuel handling (FHS)                                    | 6       |               | 6     |
|                      | High pressure core spray (HCS)                         | 2       |               | 2     |
|                      | High pressure injection (HPI)                          | 13      |               | 13    |
|                      | Main feedwater (MFW)                                   | 2       |               | 2     |
|                      | Main steam (MSS)                                       | 1       |               | 1     |
|                      | Reactor core isolation (RCI)                           | 3       |               | 3     |
|                      | Residual Heat Removal (LCI in BWRs, LPI in PWRs) (RHR) | 15      |               | 15    |
|                      | Standby liquid control (SLC)                           | 11      |               | 11    |
|                      | Standby service water (SSW)                            | 5       |               | 5     |
|                      | Liquid, Unpressurized Total                            | 221     |               | 221   |
| Liquid,              | Chemical and volume control (CVC)                      | 19      |               | 19    |
| Pressurized          | Component cooling water (CCW)                          | 11      |               | 11    |
|                      | Condensate system (CDS)                                | 10      |               | 10    |
|                      | Condensate transfer system (CTS)                       | 3       |               | 3     |
|                      | Containment spray recirculation (CSR)                  | 5       |               | 5     |
|                      | Emergency power supply (EPS)                           | 10      |               | 10    |
|                      | Firewater (FWS)                                        | 7       |               | 7     |
|                      | Fuel handling (FHS)                                    | 1       |               | 1     |
|                      | High pressure injection (HPI)                          | 20      |               | 20    |
|                      | Instrument air (IAS)                                   | 2       |               | 2     |

Table 171. TNK systems.

|               |                                            | Number of Components |        |       |  |  |
|---------------|--------------------------------------------|----------------------|--------|-------|--|--|
|               |                                            | High/<br>Unknown     | Low    |       |  |  |
| Pooling Group | System                                     | Demand               | Demand | Total |  |  |
|               | Main steam (MSS)                           | 1                    |        | 1     |  |  |
|               | Reactor coolant (RCS)                      | 11                   |        | 11    |  |  |
|               | Residual Heat Removal (LCI in BWRs, LPI in | 75                   |        | 75    |  |  |
|               | PWRs) (RHR)                                |                      |        |       |  |  |
|               | Standby service water (SSW)                | 2                    |        | 2     |  |  |
|               | Liquid, Pressurized Total                  | 177                  |        | 177   |  |  |
| Gas           | Emergency power supply (EPS)               | 5                    |        | 5     |  |  |
|               | Firewater (FWS)                            | 2                    |        | 2     |  |  |
|               | Instrument air (IAS)                       | 25                   |        | 25    |  |  |
|               | Gas Total                                  | 32                   |        | 32    |  |  |
|               | Grand Total                                | 430                  |        | 430   |  |  |

Table 172 summarizes the data obtained from EPIX and used in the TNK analysis.

|               |         | J        | Data         |            | Counts |            | Percent with Failures |  |
|---------------|---------|----------|--------------|------------|--------|------------|-----------------------|--|
| Pooling       | Failure |          | Demands or   |            |        |            |                       |  |
| Group         | Mode    | Failures | Hours        | Components | Plants | Components | Plants                |  |
|               | FC      | 16       | 46,469,300 h | 383        | 77     | 3.7%       | 16.9%                 |  |
| Liquid,       | ELS     | 5        | 19,535,510 h | 156        | 45     | 3.2%       | 8.9%                  |  |
| Pressurized   |         |          |              |            |        |            |                       |  |
| Liquid,       | ELL     |          |              | 156        | 45     |            |                       |  |
| Pressurized   |         |          |              |            |        |            |                       |  |
| Liquid,       | ELS     | 4        | 22,725,910 h | 195        | 68     | 2.1%       | 5.9%                  |  |
| Unpressurized |         |          |              |            |        |            |                       |  |
| Liquid,       | ELL     |          |              | 195        | 68     |            |                       |  |
| Unpressurized |         |          |              |            |        |            |                       |  |
| IAŜ           | FC      | 0        | 3,287,400 h  | 25         | 4      | 0.0%       | 0.0%                  |  |
| SWS           | FC      | 0        | 880,966 h    | 7          | 4      | 0.0%       | 0.0%                  |  |
| Gas           | ELS     | 0        | 4,207,872 h  | 32         | 7      | 0.0%       | 0.0%                  |  |
| Gas           | ELL     |          |              | 32         | 7      |            |                       |  |

| Table 172     | TNV | unreliability data. |
|---------------|-----|---------------------|
| Table $1/2$ . | INK | unremannuv data.    |

### A-10.5.3 Industry-Average Baselines

Table 173 lists the industry-average failure rate distributions. These industry-average failure rates do not account for any recovery.

Table 173. Selected industry distributions of p and  $\lambda$  for TNKs.

|                  |                 | Analysis         |          |          |          |          |       | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
|                  | FC              | EB/PL/KS         | 5.99E-10 | 1.61E-07 | 4.18E-07 | 1.72E-06 | Gamma | 0.42      | 1.00E+06 |
| Liquid,          | ELS             | EB/PL/KS         | 8.76E-10 | 1.12E-07 | 2.51E-07 | 9.71E-07 | Gamma | 0.49      | 1.95E+06 |
| Pressurized      |                 |                  |          |          |          |          |       |           |          |
| Liquid,          | ELL             |                  | 1.88E-12 | 4.28E-09 | 1.76E-08 | 8.04E-08 | Gamma | 0.30      | 1.71E+07 |
| Pressurized      |                 |                  |          |          |          |          |       |           |          |
| Liquid,          | ELS             | JNID/IL          | 7.32E-08 | 1.84E-07 | 1.98E-07 | 3.73E-07 | Gamma | 4.50      | 2.27E+07 |
| Unpressurized    |                 |                  |          |          |          |          |       |           |          |
| Liquid,          | ELL             |                  | 1.48E-12 | 3.38E-09 | 1.39E-08 | 6.34E-08 | Gamma | 0.30      | 2.16E+07 |
| Unpressurized    |                 |                  |          |          |          |          |       |           |          |
| IAS              | FC              | JNID/IL          | 5.98E-10 | 6.91E-08 | 1.52E-07 | 5.84E-07 | Gamma | 0.50      | 3.29E+06 |
| SSW              | FC              | JNID/IL          | 2.23E-09 | 2.58E-07 | 5.68E-07 | 2.18E-06 | Gamma | 0.50      | 8.81E+05 |

|         | Analysis |         |          |          |          |          | Distribution |      |          |
|---------|----------|---------|----------|----------|----------|----------|--------------|------|----------|
| Pooling | Failure  | Type /  |          |          |          |          |              |      |          |
| Group   | Mode     | Source  | 5%       | Median   | Mean     | 95%      | Туре         | α    | β        |
| Gas     | ELS      | JNID/IL | 4.67E-10 | 5.40E-08 | 1.19E-07 | 4.56E-07 | Gamma        | 0.50 | 4.21E+06 |
| Gas     | ELL      |         | 8.92E-13 | 2.03E-09 | 8.33E-09 | 3.81E-08 | Gamma        | 0.30 | 3.60E+07 |

### A-10.6 Orifice (ORF)

### A-10.6.1 Component Description

The orifice (ORF) boundary includes the orifice. The failure mode for ORF is listed in Table 160.

### A-10.6.1.1 Data Collection and Review

Data for ORF UR baselines were obtained from the Westinghouse Savannah River Company (WSRC) database [A-9]. None of the data sources used in WSRC are newer than approximately 1990. WSRC presents Category 3 data (see Section A.1 in NUREG/CR-6928) for ORFs in water systems.

#### A-10.6.1.2 Industry-Average Baselines

Table 174 lists the industry-average failure rate distributions. The FTOP failure mode is not supported by EPIX data. The mean is from WSRC, and the  $\alpha$  parameter of 0.30 is assumed.

|                  |                 | Analysis         |          |          |          |          |       | Distribut | tion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|-----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β         |
| -                | PG              | WSRC             | 1.07E-10 | 2.44E-07 | 1.00E-06 | 4.57E-06 | Gamma | 0.300     | 3.000E+05 |

Table 174. Selected industry distributions of p and  $\lambda$  for ORFs.

# A-10.7 PIPE (PIPE)

### A-10.7.1 Component Description

The pipe (PIPE) boundary includes piping and pipe welds in each system. The flanges connecting piping segments are not included in the pipe component. The failure modes for PIPE are listed in Table 160.

### A-10.7.2 Data Collection and Review

The data and results for PIPE UR baselines were obtained from NUREG/CR-6928 which used the data from the EPIX database, covering 1997–2004. There are 10,330 PIPE components in 112 systems from 96 plants in the data originally gathered from EPIX. EPIX reporting requirements allow great flexibility in defining PIPE components. Within a given system, one plant may report one PIPE component covering the entire system while another may subdivide the piping into many smaller segments. The systems included in the PIPE data collection are listed in Table 175 with the number of plants reporting information for each system. Note that the number of PIPE components per system is not a meaningful number given the flexibility in reporting requirements. However, the number of plants per system is useful, given the system footage information presented in Table 175.

| System | Description                     | Count of<br>Plants<br>(note a) | PWR System<br>Footage per<br>Plant<br>(note b) | BWR System<br>Footage per<br>Plant<br>(note b) | Comment             |
|--------|---------------------------------|--------------------------------|------------------------------------------------|------------------------------------------------|---------------------|
| ESW    | •                               | 37                             | 5036                                           | (note b)                                       | PWR estimate used   |
|        | Emergency service water         |                                | 5050                                           |                                                | for average footage |
| CCW    | Component cooling water         | 13                             | 4008                                           | 2920                                           | CCW footage for     |
|        |                                 |                                |                                                |                                                | BWRs is RBCCW       |
| AFW    | Auxiliary feedwater             | 14                             | 624                                            |                                                |                     |
| CSR    | Containment spray               | 11                             | 1875                                           |                                                | RHR (PWR)           |
|        | recirculation                   |                                |                                                |                                                | estimate used for   |
|        |                                 |                                |                                                |                                                | CSS footage         |
| HCS    | High pressure core spray        | 1                              |                                                | 2912                                           | HPCI estimate used  |
|        |                                 | _                              |                                                |                                                | for HPCS footage    |
| HCI    | High pressure coolant injection | 7                              |                                                | 2912                                           |                     |
| LCS    | Low pressure core spray         | 4                              |                                                | 666                                            |                     |
| RCI    | Reactor core isolation          | 4                              |                                                | 520                                            |                     |
| LCI    | Low pressure coolant            | 7                              |                                                | 2681                                           |                     |
|        | injection                       |                                |                                                |                                                |                     |
| LPI    | Low pressure injection          | 13                             | 1875                                           |                                                |                     |
| HPI    | High pressure injection         | 11                             | 1422                                           |                                                |                     |
| CVC    | Chemical and volume control     | 19                             | 3276                                           |                                                |                     |

Table 175. PIPE systems.

a. This entry is the number of plants reporting piping data to EPIX for the system indicated.

b. Estimates are from NUREG/CR-4407, *Pipe Break Frequency Estimation for Nuclear Power Plants* (Ref. A-13). Estimates are for piping with 2-inch or larger diameter.

Table 176 summarizes the data obtained from EPIX and used in the PIPE analysis. Piping ELS events are those with external leakage rates from 1 to 50 gpm. Events that were uncertain were counted as 0.5 events. Note that the hours for ELS are reactor-year hours.

| Pooling<br>Group | System      | Failure<br>Mode | Events<br>(1997 - 2004) | Total Foot-Hours<br>(1997 - 2004) |
|------------------|-------------|-----------------|-------------------------|-----------------------------------|
| All              | ESW         | ELS             | 8.5                     | 1.306E+10                         |
|                  | CCW         | ELS             | 0.5                     | 3.321E+09                         |
|                  | AFW         | ELS             | 0.0                     | 6.122E+08                         |
|                  | CSR         | ELS             | 0.0                     | 1.445E+09                         |
|                  | HCS         | ELS             | 0.0                     | 2.041E+08                         |
|                  | HCI         | ELS             | 0.0                     | 1.429E+09                         |
|                  | LCS         | ELS             | 0.0                     | 1.867E+08                         |
|                  | RCI         | ELS             | 0.0                     | 1.458E+08                         |
|                  | LCI         | ELS             | 0.0                     | 1.315E+09                         |
|                  | LPI         | ELS             | 0.5                     | 1.708E+09                         |
|                  | HPI         | ELS             | 1.0                     | 1.096E+09                         |
|                  | CVC         | ELS             | 1.5                     | 4.362E+09                         |
|                  | All but ESW | ELS             | 3.5                     | 1.583E+10                         |



#### A-10.7.3 Industry-Average Baselines

Table 177 lists the industry-average failure rate distributions. For ESW piping, the selected ELL mean is the ELS mean multiplied by 0.2, with an assumed  $\alpha$  of 0.3. For non-ESW piping, the ELL mean is multiplied by 0.1. These multipliers are based on limited EPIX data for large leaks as explained in Section A.1 in NUREG/CR-6928.

Table 177. Selected industry distributions of  $\lambda$  for PIPEs.

|         |                 | Analysis         |          |          |          |          |       | Distribut | tion      |
|---------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|-----------|
| System  | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β         |
| ESW     | ELS             | SCNID/IL         | 2.71E-12 | 3.14E-10 | 6.89E-10 | 2.65E-09 | Gamma | 0.500     | 7.255E+08 |
|         | ELL             | ELS/EPIX         | 1.48E-14 | 3.36E-11 | 1.38E-10 | 6.31E-10 | Gamma | 0.300     | 2.176E+09 |
| Non-ESW | ELS             | SCNID/IL         | 9.94E-13 | 1.15E-10 | 2.53E-10 | 9.71E-10 | Gamma | 0.500     | 1.978E+09 |
|         | ELL             | ELS/EPIX         | 2.71E-15 | 6.16E-12 | 2.53E-11 | 1.16E-10 | Gamma | 0.300     | 1.187E+10 |

### A-10.8 Heat Exchanger (HTX)

#### A-10.8.1 Component Description

The heat exchanger (HTX) boundary includes the heat exchanger shell and tubes. The failure modes for HTX are listed in Table 178.

| <b>Pooling Group</b> | Failure Mode | Parameter | Units | Description                                    |
|----------------------|--------------|-----------|-------|------------------------------------------------|
| All                  | LOHT         | λ         | 1/h   | Loss of heat transfer                          |
|                      | ELS (tube)   | λ         | 1/h   | External leak of the heat exchanger tube side  |
|                      | ELS (shell)  | λ         | 1/h   | External leak of the heat exchanger shell side |

Table 178. HTX failure modes.

#### A-10.8.2 Data Collection and Review

Data for HTX UR baselines were obtained from the IRIS database, covering 2006–2020 using RADS. The systems and operational status included in the HTX data collection are listed in Table 179 with the number of components included with each system. The component count is divided into two categories: High/Unknown Demand, which shows the counts for either high-demand components or those components that do not have demand information available, and Low-Demand, which shows the counts for those components that are known to be  $\leq 20$  demands per year. The reliability estimates that do not require specific component demand information use all components regardless of whether demand data are available (e.g., leakage, spurious operation, and operation).

|                  |                                                        | Num                        | ber of Compone | nts   |
|------------------|--------------------------------------------------------|----------------------------|----------------|-------|
| Pooling<br>Group | System                                                 | High/<br>Unknown<br>Demand | Low<br>Demand  | Total |
| All              | Auxiliary feedwater (AFW)                              | 9                          | 201110110      | 9     |
|                  | Chemical and volume control (CVC)                      | 105                        |                | 105   |
|                  | Circulating water system (CWS)                         | 2                          |                | 2     |
|                  | Component cooling water (CCW)                          | 273                        | 8              | 281   |
|                  | Condensate system (CDS)                                | 341                        |                | 341   |
|                  | Containment fan cooling (CFC)                          | 206                        | 1              | 207   |
|                  | Containment spray recirculation (CSR)                  | 30                         | 4              | 34    |
|                  | Control rod drive (CRD)                                | 2                          |                | 2     |
|                  | Emergency power supply (EPS)                           | 189                        |                | 189   |
|                  | Firewater (FWS)                                        | 1                          |                | 1     |
|                  | Heating ventilation and air conditioning (HVC)         | 104                        | 1              | 105   |
|                  | High pressure coolant injection (HCI)                  | 4                          |                | 4     |
|                  | High pressure core spray (HCS)                         | 3                          |                | 3     |
|                  | High pressure injection (HPI)                          | 11                         |                | 11    |
|                  | Instrument air (IAS)                                   | 33                         |                | 33    |
|                  | Isolation condenser (ISO)                              | 11                         |                | 11    |
|                  | Low pressure core spray (LCS)                          | 2                          |                | 2     |
|                  | Main feedwater (MFW)                                   | 120                        |                | 120   |
|                  | Main steam (MSS)                                       | 40                         |                | 40    |
|                  | Normally operating service water (SWN)                 | 22                         |                | 22    |
|                  | Plant ac power (ACP)                                   | 5                          |                | 5     |
|                  | Reactor coolant (RCS)                                  | 151                        |                | 151   |
|                  | Reactor core isolation (RCI)                           | 7                          |                | 7     |
|                  | Residual Heat Removal (LCI in BWRs, LPI in PWRs) (RHR) | 251                        |                | 251   |

Table 179. HTX systems.

|         |                             | Number of Components |        | nts   |
|---------|-----------------------------|----------------------|--------|-------|
|         |                             | High/                |        |       |
| Pooling |                             | Unknown              | Low    |       |
| Group   | System                      | Demand               | Demand | Total |
|         | Standby service water (SSW) | 21                   |        | 21    |
|         | Grand Total                 | 1943                 | 14     | 1957  |

Table 180 summarizes the data obtained from EPIX and used in the HTX analysis.

|         |         | Data     |               | Counts     |        | Percent with Failure |        |
|---------|---------|----------|---------------|------------|--------|----------------------|--------|
| Pooling | Failure |          | Demands or    |            |        | Component            |        |
| Group   | Mode    | Failures | Hours         | Components | Plants | S                    | Plants |
|         | LOHT    | 67       | 222,831,700 h | 1,750      | 104    | 3.1%                 | 30.8%  |
|         | ILS     | 61       | 222,831,700 h | 1,750      | 104    | 2.4%                 | 22.1%  |
|         | ILL     |          |               | 1,750      | 104    |                      |        |
|         | ELS     | 38       | 222,831,700 h | 1,750      | 104    | 2.0%                 | 25.0%  |
|         | ELL     |          |               | 1,750      | 104    |                      |        |
| CCW     | PG      | 8        | 28,273,230 h  | 223        | 82     | 3.1%                 | 8.5%   |
| CCW-NE  | PG      | 3        | 28,273,230 h  | 223        | 82     | 1.3%                 | 3.7%   |

Table 180. HTX unreliability data.

#### A-10.8.3 Industry-Average Baselines

Table 181 lists the selected industry distributions of p and  $\lambda$  for the HTX failure modes. These industry-average failure rates do not account for any recovery.

The selected ELL (shell) mean is the ELS mean multiplied by 0.07, with an assumed  $\alpha$  of 0.3. The selected ELL (tube) mean is the ELS (tube) mean multiplied by 0.15, with an assumed  $\alpha$  of 0.3. The 0.07 and 0.15 multipliers are based on limited EPIX data for large leaks as explained in Section A.1 in NUREG/CR-6928.

Table 181. Selected industry distributions of p and  $\lambda$  for HTXs.

|                  |                 | Analysis         |          |          |          |          |       | Distribut | ion      |
|------------------|-----------------|------------------|----------|----------|----------|----------|-------|-----------|----------|
| Pooling<br>Group | Failure<br>Mode | Type /<br>Source | 5%       | Median   | Mean     | 95%      | Туре  | α         | β        |
|                  | LOHT            | EB/PL/KS         | 1.11E-09 | 1.50E-07 | 3.39E-07 | 1.32E-06 | Gamma | 0.48      | 1.42E+06 |
|                  | ILS             | JNID/IL          | 2.21E-07 | 2.74E-07 | 2.76E-07 | 3.36E-07 | Gamma | 61.50     | 2.23E+08 |
|                  | ILL             |                  | 5.91E-13 | 1.35E-09 | 5.52E-09 | 2.53E-08 | Gamma | 0.30      | 5.43E+07 |
|                  | ELS             | EB/PL/KS         | 5.71E-09 | 1.21E-07 | 1.90E-07 | 6.08E-07 | Gamma | 0.83      | 4.35E+06 |
|                  | ELL             |                  | 3.05E-12 | 6.95E-09 | 2.85E-08 | 1.30E-07 | Gamma | 0.30      | 1.05E+07 |
| CCW              | PG              | JNID/IL          | 1.53E-07 | 2.89E-07 | 3.01E-07 | 4.87E-07 | Gamma | 8.50      | 2.83E+07 |
| CCW-NE           | PG              | JNID/IL          | 3.83E-08 | 1.12E-07 | 1.24E-07 | 2.49E-07 | Gamma | 3.50      | 2.83E+07 |

### A-11. REFERENCES

- [A-1] S.A. Eide et al., Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants, U.S. Nuclear Regulatory Commission, NUREG/CR-6928, January 2007.
- [A-2] The Institute of Nuclear Power Pooling Groups, *Equipment Performance and Information Exchange System (EPIX), Volume 1 – Instructions for Data Entry, Maintenance Rule and Reliability Information Module,* INPO 98-001, 1998 (proprietary).
- [A-3] D.M. Rasmuson, T.E. Wierman, and K.J. Kvarfordt, "An Overview of the Reliability and Availability Data System (RADS)," *International Topical Meeting on Probabilistic Safety Analysis PSA'05*, American Nuclear Society, Inc., 2005.
- [A-4] T.E. Wierman, et al, *Industry Performance of Relief Valves at U.S. Commercial Nuclear Power Plants through 2007*, NUREG/CR-7037, December 2015.
- [A-5] S.A. Eide et al., *Reliability Study: Westinghouse Reactor Protection System*, 1984 1995, U.S. Nuclear Regulatory Commission, NUREG/CR-5500, Vol. 2, April 1999.
- [A-6] S.A. Eide et al., *Reliability Study: General Electric Reactor Protection System*, 1984 1995, U.S. Nuclear Regulatory Commission, NUREG/CR-5500, Vol. 3, May 1999.
- [A-7] T.E. Wierman et al., *Reliability Study: Combustion Engineering Reactor Protection System*, 1984 1998, U.S. Nuclear Regulatory Commission, NUREG/CR-5500, Vol. 10, July 2002.
- [A-8] T.E. Wierman et al., *Reliability Study: Babcock & Wilcox Reactor Protection System*, 1984 1998, U.S. Nuclear Regulatory Commission, NUREG/CR-5500, Vol. 11, July 2002.
- [A-9] C.H. Blanton and S.A. Eide, *Savannah River Site Generic Data Base Development (U)*, Westinghouse Savannah River Company, WSRC-TR-93-262, June 1993.

## **Appendix B**

## Component/Train Unavailability Data Sheets 2020 Update

## **UPDATE NOTES**

This appendix represents the third update to the original set of component availability data sheets documented in NUREG/CR-6928 [B-1]. The original set of component availability data sheets were extracted from NUREG/CR-6928 and generally contained data during the date range from 2002 to 2004. The first update to NUREG/CR-6928 generally represents component availability results using a date range from 2002 to 2010 and is often called the 2010 update. The second update generally represents component availability results using the date range from 2002 to 2015 and is often called the 2015 update. This update generally represents component availability results using the date range from 2002 to 2015 and is often called the 2015 update. This update generally represents component availability results using a date range from 2006 to 2020.

The curve fitting of the MSPI [B-2] UA data follows the approach in the 2015 update by using a Normal distribution, which was based on recommendations from statisticians during the 2015 update.

## B-1. MSPI UNAVAILABILITY DATA

|           |                              | rains, 20062020)                        |           | EDG-HCS (8 Tra               | <i>, , , , , , , , , ,</i> |
|-----------|------------------------------|-----------------------------------------|-----------|------------------------------|----------------------------|
| tatistic  | Plant Data                   | Normal Distribution                     | Statistic | Plant Data                   | Normal Distribution        |
| Mean      | 1.51E-02                     | 1.51E-02                                | Mean      | 1.33E-02                     | 1.33E-02                   |
| SD        | 7.03E-03                     | 7.04E-03                                | SD        | 3.50E-03                     | 3.74E-03                   |
| 95%       | 2.72E-02                     | 2.67E-02                                | 95%       | 1.84E-02                     | 1.94E-02                   |
| Median    | 1.40E-02                     | 1.51E-02                                | Median    | 1.28E-02                     | 1.33E-02                   |
| 5%        | 4.10E-03                     | 3.48E-03                                | 5%        | 9.07E-03                     | 7.13E-03                   |
| EF        | 1.94                         | 1.77                                    | EF        | 1.44                         | 1.46                       |
| μ         |                              | 1.51E-02                                | μ         |                              | 1.33E-02                   |
| σ         |                              | 7.04E-03                                | σ         |                              | 3.74E-03                   |
|           | EDG-SW (6 Tra                | ins, 20062020)                          |           | HCS-SW (7 Tra                | ins, 20062020)             |
| Statistic | Plant Data                   | Normal Distribution                     | Statistic | Plant Data                   | Normal Distribution        |
| Mean      | 1.11E-02                     | 1.11E-02                                | Mean      | 7.32E-03                     | 7.32E-03                   |
| SD        | 6.42E-03                     | 7.04E-03                                | SD        | 1.35E-03                     | 1.46E-03                   |
| 95%       | 1.83E-02                     | 2.27E-02                                | 95%       | 8.58E-03                     | 9.72E-03                   |
| Median    | 1.31E-02                     | 1.11E-02                                | Median    | 7.91E-03                     | 7.32E-03                   |
| 5%        | 2.56E-03                     | -4.49E-04                               | 5%        | 5.25E-03                     | 4.91E-03                   |
| EF        | 1.40                         | 2.05                                    | EF        | 1.08                         | 1.33                       |
| μ         |                              | 1.11E-02                                | μ         |                              | 7.32E-03                   |
| σ         |                              | 7.04E-03                                | σ         |                              | 1.46E-03                   |
| Statistic | EDP-AFW (5 Tra<br>Plant Data | Normal Distribution                     | Statistic | EDP-ESW (10 Tr<br>Plant Data | Normal Distribution        |
| Mean      | 5.47E-03                     | 5.47E-03                                | Mean      | 3.14E-02                     | 3.14E-02                   |
| SD        | 1.83E-03                     | 2.05E-03                                | SD        | 1.07E-02                     | 1.13E-02                   |
| 95%       | 8.02E-03                     | 8.85E-03                                | 95%       | 5.07E-02                     | 4.99E-02                   |
| Median    | 5.48E-03                     | 5.47E-03                                | Median    | 2.57E-02                     | 3.14E-02                   |
| 5%        | 3.45E-03                     | 2.10E-03                                | 5%        | 2.16E-02                     | 1.29E-02                   |
| EF        | 1.46                         | 1.62                                    | EF        | 1.97                         | 1.59                       |
| μ         |                              | 5.47E-03                                | μ         |                              | 3.14E-02                   |
| σ         |                              | 2.05E-03                                | μ<br>σ    |                              | 1.13E-02                   |
| 1         | UND A FW /16 T-              | roing 2006 2020)                        |           | UDD CCW/(4 T-                | aing 2006 2020             |
| Statistic | Plant Data                   | rains, 20062020)<br>Normal Distribution | Statistic | HDR-CCW (6 Tr<br>Plant Data  | Normal Distribution        |
| Mean      | 7.70E-04                     | 7.70E-04                                | Mean      | 2.42E-04                     | 2.42E-04                   |
| SD        | 1.09E-03                     | 1.12E-03                                | SD        | 3.65E-04                     | 4.00E-04                   |
| 95%       | 3.08E-03                     | 2.61E-03                                | 95%       | 8.45E-04                     | 9.00E-04                   |
| Median    | 0.00E+00                     | 7.70E-04                                | Median    | 2.26E-05                     | 2.42E-04                   |
| 5%        | 0.00E+00                     | -1.07E-03                               | 5%        | 0.00E+00                     | -4.16E-04                  |
| 570       | 0.001100                     | 3.39                                    | EF        | 37.39                        | 3.72                       |
| EF        |                              |                                         | 1-1       | 51.57                        |                            |
| EF<br>μ   |                              | 7.70E-04                                | μ         |                              | 2.42E-04                   |

Table 182. MSPI unavailability data and fitted distributions.

|                                                                                                                  | HDR-ESW (123 T                                                                                                                     | rains, 20062020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| tatistic                                                                                                         | Plant Data                                                                                                                         | Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Mean                                                                                                             | 4.61E-03                                                                                                                           | 4.61E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| SD                                                                                                               | 1.69E-02                                                                                                                           | 1.70E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 95%                                                                                                              | 1.58E-02                                                                                                                           | 3.26E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Median                                                                                                           | 1.49E-04                                                                                                                           | 4.61E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 5%                                                                                                               | 0.00E+00                                                                                                                           | -2.34E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| EF                                                                                                               | 106.04                                                                                                                             | 7.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| μ                                                                                                                |                                                                                                                                    | 4.61E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| σ                                                                                                                |                                                                                                                                    | 1.70E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                  | HDR-ISO (6 Tra                                                                                                                     | ins, 20062020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Statistic                                                                                                        | Plant Data                                                                                                                         | Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Mean                                                                                                             | 2.62E-03                                                                                                                           | 2.62E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| SD                                                                                                               | 1.05E-03                                                                                                                           | 1.15E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 95%                                                                                                              | 4.00E-03                                                                                                                           | 4.52E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Median                                                                                                           | 2.57E-03                                                                                                                           | 2.62E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 5%                                                                                                               | 1.26E-03                                                                                                                           | 7.24E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| EF                                                                                                               | 1.56                                                                                                                               | 1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| μ                                                                                                                |                                                                                                                                    | 2.62E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| σ                                                                                                                |                                                                                                                                    | 1.15E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| HDR-RHRSW (8 Trains, 20062020)                                                                                   |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| H                                                                                                                |                                                                                                                                    | Frains, 20062020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                  | <b>IDR-RHRSW (8 1</b><br>Plant Data                                                                                                | , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| statistic                                                                                                        |                                                                                                                                    | , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                                                                  | Plant Data                                                                                                                         | Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Statistic<br>Mean                                                                                                | Plant Data<br>2.81E-03                                                                                                             | Normal Distribution<br>2.81E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Statistic<br>Mean<br>SD<br>95%                                                                                   | Plant Data<br>2.81E-03<br>3.28E-03                                                                                                 | Normal Distribution<br>2.81E-03<br>3.50E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| Statistic<br>Mean<br>SD<br>95%                                                                                   | Plant Data<br>2.81E-03<br>3.28E-03<br>8.20E-03                                                                                     | Normal Distribution<br>2.81E-03<br>3.50E-03<br>8.57E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median                                                                         | Plant Data<br>2.81E-03<br>3.28E-03<br>8.20E-03<br>1.90E-03                                                                         | Normal Distribution<br>2.81E-03<br>3.50E-03<br>8.57E-03<br>2.81E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| tatistic<br>Mean<br>SD<br>95%<br>Aedian<br>5%                                                                    | Plant Data           2.81E-03           3.28E-03           8.20E-03           1.90E-03           6.13E-05                          | Normal Distribution<br>2.81E-03<br>3.50E-03<br>8.57E-03<br>2.81E-03<br>-2.96E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median<br>5%<br>EF                                                             | Plant Data           2.81E-03           3.28E-03           8.20E-03           1.90E-03           6.13E-05                          | Normal Distribution<br>2.81E-03<br>3.50E-03<br>8.57E-03<br>2.81E-03<br>-2.96E-03<br>3.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median<br>5%<br>EF<br>μ                                                        | Plant Data           2.81E-03           3.28E-03           8.20E-03           1.90E-03           6.13E-05                          | Normal Distribution<br>2.81E-03<br>3.50E-03<br>8.57E-03<br>2.81E-03<br>-2.96E-03<br>3.05<br>2.81E-03<br>3.50E-03                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median<br>5%<br>EF<br>μ<br>σ                                                   | Plant Data<br>2.81E-03<br>3.28E-03<br>8.20E-03<br>1.90E-03<br>6.13E-05<br>4.32<br>                                                 | Normal Distribution<br>2.81E-03<br>3.50E-03<br>8.57E-03<br>2.81E-03<br>-2.96E-03<br>3.05<br>2.81E-03<br>3.50E-03<br>3.50E-03                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median<br>5%<br>EF<br>μ<br>σ                                                   | Plant Data<br>2.81E-03<br>3.28E-03<br>8.20E-03<br>1.90E-03<br>6.13E-05<br>4.32<br><br><br>HTX-ESW (4 Tr                            | Normal Distribution<br>2.81E-03<br>3.50E-03<br>8.57E-03<br>2.81E-03<br>-2.96E-03<br>3.05<br>2.81E-03<br>3.50E-03<br>3.50E-03                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median<br>5%<br>EF<br>μ<br>σ<br>Statistic                                      | Plant Data 2.81E-03 3.28E-03 8.20E-03 1.90E-03 6.13E-05 4.32 HTX-ESW (4 Tr Plant Data                                              | Normal Distribution<br>2.81E-03<br>3.50E-03<br>8.57E-03<br>2.81E-03<br>-2.96E-03<br>3.05<br>2.81E-03<br>3.50E-03<br>3.50E-03<br>ains, 20062020)<br>Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median<br>5%<br>EF<br>μ<br>σ<br>Statistic<br>Mean                              | Plant Data 2.81E-03 3.28E-03 8.20E-03 1.90E-03 6.13E-05 4.32 HTX-ESW (4 Tri Plant Data 1.61E-02                                    | Normal Distribution           2.81E-03           3.50E-03           8.57E-03           2.81E-03           -2.96E-03           3.05           2.81E-03           3.05           2.81E-03           3.05           2.81E-03           3.50E-03           3.50E-03           3.50E-03           3.50E-03           1.61E-02                                                                                                                                                                                                                                    |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median<br>5%<br>EF<br>μ<br>σ<br>Statistic<br>Statistic<br>Mean<br>SD<br>95%    | Plant Data 2.81E-03 3.28E-03 8.20E-03 1.90E-03 6.13E-05 4.32 HTX-ESW (4 Tr Plant Data 1.61E-02 3.32E-03                            | Normal Distribution           2.81E-03           3.50E-03           8.57E-03           2.81E-03           -2.96E-03           3.05           2.81E-03           3.05           2.81E-03           3.05           2.81E-03           3.50E-03           3.50E-03           ains, 20062020)           Normal Distribution           1.61E-02           3.84E-03                                                                                                                                                                                               |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median<br>5%<br>EF<br>μ<br>σ<br>Statistic<br>Mean<br>SD<br>95%                 | Plant Data 2.81E-03 3.28E-03 8.20E-03 1.90E-03 6.13E-05 4.32 HTX-ESW (4 Tri Plant Data 1.61E-02 3.32E-03 1.97E-02                  | Normal Distribution           2.81E-03           3.50E-03           8.57E-03           2.81E-03           -2.96E-03           3.05           2.81E-03           3.50E-03           ains, 20062020)           Normal Distribution           1.61E-02           3.84E-03           2.24E-02                                                                                                                                                                                                                                                                   |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median<br>5%<br>EF<br>μ<br>σ<br>Statistic<br>Mean<br>SD<br>95%<br>Median       | Plant Data 2.81E-03 3.28E-03 8.20E-03 1.90E-03 6.13E-05 4.32 HTX-ESW (4 Tr Plant Data 1.61E-02 3.32E-03 1.97E-02 1.59E-02          | Normal Distribution           2.81E-03           3.50E-03           8.57E-03           2.81E-03           -2.96E-03           3.05           2.81E-03           3.50E-03           3.05           2.81E-03           3.50E-03           3.50E-03           3.50E-03           3.50E-03           3.50E-03           2.81E-03           3.50E-03           2.81E-03           2.24E-02           1.61E-02                                                                                                                                                    |  |  |  |
| Statistic<br>Mean<br>SD<br>95%<br>Median<br>5%<br>EF<br>μ<br>σ<br>Statistic<br>Mean<br>SD<br>95%<br>Median<br>5% | Plant Data 2.81E-03 3.28E-03 8.20E-03 1.90E-03 6.13E-05 4.32 HTX-ESW (4 Tr Plant Data 1.61E-02 3.32E-03 1.97E-02 1.59E-02 1.26E-02 | Normal Distribution           2.81E-03           3.50E-03           8.57E-03           2.81E-03           -2.96E-03           3.05           2.81E-03           3.05           2.81E-03           3.05           2.81E-03           3.50E-03           3.50E-03           3.50E-03           3.50E-03           2.81E-03           3.50E-03           3.50E-03           2.81E-03           3.50E-03           ains, 20062020)           Normal Distribution           1.61E-02           3.84E-03           2.24E-02           1.61E-02           9.74E-03 |  |  |  |

|           | HDR-HPI (45 Trains, 20062020) |                     |  |  |  |  |
|-----------|-------------------------------|---------------------|--|--|--|--|
| Statistic | Plant Data                    | Normal Distribution |  |  |  |  |
| Mean      | 1.36E-04                      | 1.36E-04            |  |  |  |  |
| SD        | 2.43E-04                      | 2.46E-04            |  |  |  |  |
| 95%       | 6.60E-04                      | 5.41E-04            |  |  |  |  |
| Median    | 4.39E-05                      | 1.36E-04            |  |  |  |  |
| 5%        | 0.00E+00                      | -2.68E-04           |  |  |  |  |
| EF        | 15.03                         | 3.98                |  |  |  |  |
| μ         |                               | 1.36E-04            |  |  |  |  |
| σ         |                               | 2.46E-04            |  |  |  |  |

#### HDR-RHR (16 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 7.21E-04   | 7.21E-04            |
| SD        | 1.24E-03   | 1.28E-03            |
| 95%       | 3.78E-03   | 2.83E-03            |
| Median    | 2.26E-05   | 7.21E-04            |
| 5%        | 0.00E+00   | -1.39E-03           |
| EF        | 167.26     | 3.93                |
| μ         |            | 7.21E-04            |
| σ         |            | 1.28E-03            |

#### HTX-CCW (86 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 7.73E-03   | 7.73E-03            |
| SD        | 9.16E-03   | 9.22E-03            |
| 95%       | 3.58E-02   | 2.29E-02            |
| Median    | 4.24E-03   | 7.73E-03            |
| 5%        | 1.83E-04   | -7.43E-03           |
| EF        | 8.44       | 2.96                |
| μ         |            | 7.73E-03            |
| σ         |            | 9.22E-03            |

#### HTX-RHR-BWR (6 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 3.05E-03   | 3.05E-03            |
| SD        | 1.94E-03   | 2.13E-03            |
| 95%       | 4.83E-03   | 6.55E-03            |
| Median    | 3.99E-03   | 3.05E-03            |
| 5%        | 3.43E-04   | -4.47E-04           |
| EF        | 1.21       | 2.15                |
| μ         |            | 3.05E-03            |
| σ         |            | 2.13E-03            |

| HTX-RHR-PWR (15 Years, 20062020) |            |                     |
|----------------------------------|------------|---------------------|
| Statistic                        | Plant Data | Normal Distribution |
| Mean                             | 2.09E-04   | 2.09E-04            |
| SD                               | 4.15E-04   | 4.29E-04            |
| 95%                              | 1.09E-03   | 9.15E-04            |
| Median                           | 0.00E+00   | 2.09E-04            |
| 5%                               | 0.00E+00   | -4.97E-04           |
| EF                               |            | 4.38                |
| μ                                |            | 2.09E-04            |
| σ                                |            | 4.29E-04            |

#### MDP-AFW (124 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 3.14E-03   | 3.14E-03            |
| SD        | 2.02E-03   | 2.03E-03            |
| 95%       | 7.02E-03   | 6.49E-03            |
| Median    | 2.50E-03   | 3.14E-03            |
| 5%        | 5.40E-04   | -2.01E-04           |
| EF        | 2.81       | 2.07                |
| μ         |            | 3.14E-03            |
| σ         |            | 2.03E-03            |

#### MDP-ESW (305 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 1.24E-02   | 1.24E-02            |
| SD        | 1.43E-02   | 1.44E-02            |
| 95%       | 4.55E-02   | 3.61E-02            |
| Median    | 6.87E-03   | 1.24E-02            |
| 5%        | 5.10E-04   | -1.12E-02           |
| EF        | 6.62       | 2.91                |
| μ         |            | 1.24E-02            |
| σ         |            | 1.44E-02            |

#### MDP-HCS (8 Trains, 2006--2020)

| MDP-HCS (8 Trains, 20062020) |            |                     |
|------------------------------|------------|---------------------|
| Statistic                    | Plant Data | Normal Distribution |
| Mean                         | 7.68E-03   | 7.68E-03            |
| SD                           | 1.97E-03   | 2.10E-03            |
| 95%                          | 1.02E-02   | 1.11E-02            |
| Median                       | 7.67E-03   | 7.68E-03            |
| 5%                           | 4.75E-03   | 4.22E-03            |
| EF                           | 1.33       | 1.45                |
| μ                            |            | 7.68E-03            |
| σ                            |            | 2.10E-03            |

| MDP-ALL (1061 Trains, 20062020) |            |                     |
|---------------------------------|------------|---------------------|
| Statistic                       | Plant Data | Normal Distribution |
| Mean                            | 6.56E-03   | 6.56E-03            |
| SD                              | 9.08E-03   | 9.09E-03            |
| 95%                             | 2.02E-02   | 2.15E-02            |
| Median                          | 4.08E-03   | 6.56E-03            |
| 5%                              | 6.48E-04   | -8.39E-03           |
| EF                              | 4.95       | 3.28                |
| μ                               |            | 6.56E-03            |
| σ                               |            | 9.09E-03            |

#### MDP-CCW (142 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 4.82E-03   | 4.82E-03            |
| SD        | 6.30E-03   | 6.32E-03            |
| 95%       | 1.58E-02   | 1.52E-02            |
| Median    | 3.36E-03   | 4.82E-03            |
| 5%        | 4.60E-04   | -5.58E-03           |
| EF        | 4.70       | 3.15                |
| μ         |            | 4.82E-03            |
| σ         |            | 6.32E-03            |
|           |            |                     |

#### MDP-FWS (4 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 7.68E-03   | 7.68E-03            |
| SD        | 6.59E-04   | 7.61E-04            |
| 95%       | 8.55E-03   | 8.93E-03            |
| Median    | 7.54E-03   | 7.68E-03            |
| 5%        | 7.00E-03   | 6.43E-03            |
| EF        | 1.13       | 1.16                |
| μ         |            | 7.68E-03            |
| σ         |            | 7.61E-04            |

#### MDP-HPI (199 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 2.99E-03   | 2.99E-03            |
| SD        | 2.07E-03   | 2.08E-03            |
| 95%       | 5.79E-03   | 6.40E-03            |
| Median    | 2.69E-03   | 2.99E-03            |
| 5%        | 7.39E-04   | -4.32E-04           |
| EF        | 2.15       | 2.14                |
| μ         |            | 2.99E-03            |
| σ         |            | 2.08E-03            |

| MDP-RHR (225 Trains, 20062020) |            |                     |
|--------------------------------|------------|---------------------|
| Statistic                      | Plant Data | Normal Distribution |
| Mean                           | 5.09E-03   | 5.09E-03            |
| SD                             | 2.85E-03   | 2.86E-03            |
| 95%                            | 1.04E-02   | 9.79E-03            |
| Median                         | 4.92E-03   | 5.09E-03            |
| 5%                             | 1.44E-03   | 3.91E-04            |
| EF                             | 2.11       | 1.92                |
| μ                              |            | 5.09E-03            |
| σ                              |            | 2.86E-03            |

#### MDP-RHR-PWR (145 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 4.63E-03   | 4.63E-03            |
| SD        | 2.95E-03   | 2.96E-03            |
| 95%       | 1.03E-02   | 9.50E-03            |
| Median    | 4.06E-03   | 4.63E-03            |
| 5%        | 1.07E-03   | -2.28E-04           |
| EF        | 2.54       | 2.05                |
| μ         |            | 4.63E-03            |
| σ         |            | 2.96E-03            |

## TDP-AFW (66 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 4.64E-03   | 4.64E-03            |
| SD        | 2.96E-03   | 2.99E-03            |
| 95%       | 1.06E-02   | 9.55E-03            |
| Median    | 4.16E-03   | 4.64E-03            |
| 5%        | 1.15E-03   | -2.71E-04           |
| EF        | 2.55       | 2.06                |
| μ         |            | 4.64E-03            |
| σ         |            | 2.99E-03            |

#### MDP-RHR-BWR (80 Trains, 2006--2020) Statistic Normal Distribution Plant Data Mean 5.92E-03 5.92E-03 SD 2.47E-03 2.48E-03 95% 1.02E-02 1.00E-02 Median 5.73E-03 5.92E-03 5% 2.12E-03 1.84E-03 EF 1.78 1.69 5.92E-03 μ --2.48E-03 σ

#### MDP-RHRSW (54 Trains, 2006--2020)

|           | · · · · (· |                     |
|-----------|------------|---------------------|
| Statistic | Plant Data | Normal Distribution |
| Mean      | 4.91E-03   | 4.91E-03            |
| SD        | 2.69E-03   | 2.72E-03            |
| 95%       | 8.54E-03   | 9.38E-03            |
| Median    | 4.57E-03   | 4.91E-03            |
| 5%        | 1.67E-03   | 4.43E-04            |
| EF        | 1.87       | 1.91                |
| μ         |            | 4.91E-03            |
| σ         |            | 2.72E-03            |
|           |            |                     |

## TDP-HCI (24 Trains, 2006--2020)

| Statistic | Plant Data | Normal Distribution |
|-----------|------------|---------------------|
| Mean      | 1.11E-02   | 1.11E-02            |
| SD        | 2.71E-03   | 2.77E-03            |
| 95%       | 1.51E-02   | 1.57E-02            |
| Median    | 1.14E-02   | 1.11E-02            |
| 5%        | 7.08E-03   | 6.57E-03            |
| EF        | 1.32       | 1.41                |
| μ         |            | 1.11E-02            |
| σ         |            | 2.77E-03            |

|           | TDP-RCI (30 Trains, 20062020) |                     |           | TDP-ALL (120 Trains, 20062020) |                     |  |  |
|-----------|-------------------------------|---------------------|-----------|--------------------------------|---------------------|--|--|
| Statistic | Plant Data                    | Normal Distribution | Statistic | Plant Data                     | Normal Distribution |  |  |
| Mean      | 1.01E-02                      | 1.01E-02            | Mean      | 7.30E-03                       | 7.30E-03            |  |  |
| SD        | 4.19E-03                      | 4.26E-03            | SD        | 4.41E-03                       | 4.43E-03            |  |  |
| 95%       | 1.92E-02                      | 1.71E-02            | 95%       | 1.53E-02                       | 1.46E-02            |  |  |
| Median    | 9.23E-03                      | 1.01E-02            | Median    | 7.02E-03                       | 7.30E-03            |  |  |
| 5%        | 5.28E-03                      | 3.07E-03            | 5%        | 1.43E-03                       | 1.16E-05            |  |  |
| EF        | 2.08                          | 1.69                | EF        | 2.18                           | 2.00                |  |  |
| μ         |                               | 1.01E-02            | μ         |                                | 7.30E-03            |  |  |
| σ         |                               | 4.26E-03            | σ         |                                | 4.43E-03            |  |  |

Acronyms - AFW (auxiliary feedwater), BWR (boiling water reactor), CCW (component cooling water), EDG (emergency diesel generator), EDGSW (EDG service water), EDP (engine driven pump), EPS (emergency power system), ESW (emergency service water), FWS (feedwater system), HDR (header), HCI (high pressure coolant injection), HCS (high pressure core spray), HPSI (high pressure safety injection), HTX (heat exchanger), IC (isolation condenser), MDP (motor driven pump), PWR (pressurized water reactor), RCI (reactor core isolation cooling), RHR (residual heat removal), RHRSW (RHR service water), TDP (turbine driven pump), UA (unavailability)

## **B-2. OTHER UNAVAILABILITY ESTIMATES**

### Table 183. Other source unavailability estimates.

|                                  |                                                       |        | Data                                                                                    | <b>Recommended Probability Distribution</b> |          |       |        |                 |
|----------------------------------|-------------------------------------------------------|--------|-----------------------------------------------------------------------------------------|---------------------------------------------|----------|-------|--------|-----------------|
| Train<br>Unavailability<br>Event | Description                                           | Source | Reference                                                                               | Distribution                                | Mean     | α     | β      | Error<br>Factor |
| AHU-TM                           | Air Handling Unit Test Or Maintenance                 | IPEs   | NUREG/CR-6928 Appendix B, Section B.4                                                   | Beta                                        | 2.50E-03 | 0.50  | 199.5  | 8.4             |
| BAC-TM                           | AC Bus In Test Or Maintenance                         | IPEs   | NUREG/CR-6928 Appendix B, Section B.4                                                   | Beta                                        | 2.00E-04 | 0.50  | 2499.5 | 8.4             |
| BAT-TM                           | Battery Test or Maintenance                           | IPEs   | Letter: Generic Test and Maintenance<br>Unavailability Values, JCN W6467 -<br>MBS-02-99 | Lognormal                                   | 2.72E-03 | 52.90 |        | 8.4             |
| BCH-TM                           | Battery Charger Test & Maintenance                    | IPEs   | NUREG/CR-6928 Appendix B,<br>Section B.4                                                | Beta                                        | 2.00E-03 | 0.50  | 249.5  | 8.4             |
| BDC-TM                           | DC Bus Test & Maintenance                             | IPEs   | NUREG/CR-6928 Appendix B, Section B.4                                                   | Beta                                        | 2.00E-04 | 0.50  | 2499.5 | 8.4             |
| CCP-TM-RPS                       | RPS Channel-A IN T&M                                  | IPEs   | RPS Study NUREGs; NUREG/CR-5500,<br>Vol 2,3,10, and 11                                  | Beta                                        | 5.00E-03 | 0.24  | 47.8   | 30.2            |
| CHL-TM                           | Chiller Unit In Test Or Maintenance                   | IPEs   | NUREG/CR-6928 Appendix B, Section B.4                                                   | Beta                                        | 2.00E-02 | 0.50  | 24.5   | 8.2             |
| CRB-TM                           | Circuit Breaker Test Or Maintenance                   | IPEs   | Letter: Generic Test and Maintenance<br>Unavailability Values, JCN W6467 -<br>MBS-02-99 | Lognormal                                   | 5.00E-01 | 0.50  |        | 2.0             |
| CTF-TM                           | Cooling Tower Fan Test Or Maintenance                 | IPEs   | NUREG/CR-6928 Appendix B,<br>Section B.4                                                | Beta                                        | 2.00E-03 | 0.50  | 249.5  | 8.4             |
| CTG-TM                           | Gas Turbine Generator Test & Maintenance              | IPEs   | NUREG/CR-6928 Appendix B, Section B.4                                                   | Beta                                        | 5.00E-02 | 0.50  | 9.5    | 7.7             |
| DDC-TM                           | Diesel Driven Compressor Fails Due To T&M             | IPEs   | NUREG/CR-6928 Appendix B, Section B.4                                                   | Beta                                        | 1.20E-02 | 0.50  | 41.2   | 8.3             |
| EDC-TM                           | Engine-Driven Compressor Test or Maintenance          | IPEs   | NUREG/CR-6928 Appendix B,<br>Section B.4                                                | Beta                                        | 1.20E-02 | 0.50  | 41.2   | 8.3             |
| EOV-TM                           | Explosive-Operated (SQUIBB) Valve Test or Maintenance | IPEs   | NUREG/CR-6928 Appendix B, B.4                                                           | Beta                                        | 6.00E-04 | 0.50  | 832.8  | 8.4             |

|                                  |                                                |        |                                                                                               |              | commended Probability Distribution |       |       |                 |
|----------------------------------|------------------------------------------------|--------|-----------------------------------------------------------------------------------------------|--------------|------------------------------------|-------|-------|-----------------|
| Train<br>Unavailability<br>Event | Description                                    | Source | Reference                                                                                     | Distribution | Mean                               | α     | β     | Error<br>Factor |
| FAN-TM                           | HVC Fan In Test Or Maintenance                 | IPEs   | NUREG/CR-6928 Appendix B, Section B.4                                                         | Beta         | 2.00E-03                           | 0.50  | 249.5 | 8.4             |
| HTX-TM                           | Heat Exchanger In Test Or Maintenance          | IPEs   | SPAR (IPEs)                                                                                   | Beta         | 2.50E-03                           | 0.30  | 119.7 | 18.7            |
| MDC-TM                           | Motor-Driven Compressor Test or Maintenance    | IPEs   | NUREG/CR-6928 Appendix B,<br>Section B.4                                                      | Beta         | 1.20E-02                           | 0.50  | 41.2  | 8.3             |
| PDP-TM                           | Positive Displacement Pump Test Or Maintenance | IPEs   | NUREG/CR-6928 Appendix B, Section B.4                                                         | Beta         | 3.00E-03                           | 0.50  | 166.2 | 8.4             |
| TFM-TM                           | Startup Transformer Test or Maintenance        | IPEs   | Letter: Generic Test and Maintenance<br>Unavailability Values, JCN W6467 -<br>MBS-02-99 [B-3] | Lognormal    | 1.75E-03                           | 90.50 |       | 8.4             |

### **B-3. REFERENCES**

- B-1. S.A. Eide et al., Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants, U.S. Nuclear Regulatory Commission, NUREG/CR-6928, January 2007.
- B-2. U.S. Nuclear Regulatory Commission, "Mitigating Systems Performance Index (MSPI)," http://nrc.gov/NRR/OVERSIGHT/ASSESS/mspi.html.
- B-3. M.S. DeHaan et al., "Generic Test and Maintenance Unavailabilities Based on Data from the IPEs," September 1999, attached to letter from M.B. Sattison, Idaho National Laboratory, to E.G. Rodrick, U.S. Nuclear Regulatory Commission, MBS-02-99, September 20, 1999.

## Appendix C

## Initiating Event Data Sheets 2020 Update UPDATE NOTES

This appendix presents the third update to the original set of IE data and results documented in NUREG/CR-6928 [C-1]. NUREG/CR-6928 was completed in February 2007 and generally contained data ranging from 1988 to 2002. The first update to NUREG/CR-6928 generally represents results from 1988 to 2010, often called the 2010 update. The second update generally represents results from 1988 to 2015; it is often called the 2015 update. This update generally represents results using a date range of 1988 to 2020.

The IE data sheets in this appendix provide supporting information and additional detail on the IE parameter estimates. These estimates reflect industry-average frequencies for IEs where U.S. commercial NPPs define the industry. Only those IEs occurring while plants are critical are covered. Low-power and shutdown IEs are not addressed, other than the shutdown LOOP IEs.

For the baseline period used to quantify the IE frequencies, Section D.1.2 of NUREG/CR-6928 describes the original process while Section 2 of INL/EXT-20-59192 [C-2] presents the process used in the 2020 IE analysis and the results that were used in this section. One change made in this 2020 Update is that for "not sparse" IE groups—including loss of feedwater, BWR general transients, BWR loss of condenser heat sink, PWR general transients, and PWR loss of condenser heat sink—the most recent 10-year period (i.e., 2011—2020) and the most recent 15-year period (i.e., 2006–2020) were included in the considerations in order to respond to an industry request to use a shorter period than the approach used in previous updates (e.g., using 1997 or 1998 as the fixed starting year for parameter estimations) to reflect the more-recent industry performance.

IE frequency estimates were obtained from a hierarchy of sources, as explained in Section 8 of NUREG/CR-6928. The preferred source is the NRC IE database [C-3], as accessed using the RADS website https://rads.inl.gov/ [C-4]. Most IE parameter estimates were obtained from this source. The IE database uses IE definitions presented in NUREG/CR-5750 [C-5]. Other sources used include NUREG/CR-6890 [C-6] and NUREG-1829 [C-7]. LOOP was analyzed in detail annually in the NRC LOOP study and the LOOP data were obtained from the most recent LOOP analysis [C-8]. The data period for the LOOP frequency is 1997–2020. The small, medium, and large LOCA frequency distributions were obtained from the approach described in [C-9]. The excessive LOCA (or vessel rupture) used the estimate from WASH-1285 [C-10]. This appendix explains in detail how data from each of these sources were used to obtain industry-average IE parameter estimates.

This update uses the same hierarchy of the 2015 Update with IE categories and subcategories. A few IEs that have been added to the 2015 update continued to be analyzed in this update to support more-detailed SPAR models:

- 1. All of the high-energy line break events
- 2. Two or more stuck open relief valves
- 3. Calculated loss of multiple AC or DC busses
- 4. Interfacing system Loss of Coolant Accident (ISLOCA)
- 5. Reactor Coolant Pump Seal LOCA (RCPLOCA)
- 6. LOOP in power operations and in shutdown.

## C-1. PRIMARY/SECONDARY INVENTORY CONTROL

This category includes line breaks from both the primary and secondary systems.

## C-1.1 High Energy Line Breaks

This category includes breaks of steam and feedwater lines greater than one inch in diameter. It does not have to be a complete break. Included are actuations or failure of rupture disks, splits, cracks, and failed welds.

#### C-1.1.1 Feedwater Line Break at Boiling Water Reactors (FWLB(BWR))

#### C-1.1.1.1 Initiating Event Description

From NUREG/CR-5750, the Feedwater Line Break at BWRs (FWLB[BWR]) initiating event is a break of a one-inch equivalent diameter or more in a feedwater or condensate line that contains main turbine working fluid at or above atmospheric saturation conditions. Examples include breeches of a pipe caused by a split, crack, weld failure, or circumferential break.

#### C-1.1.1.2 Data Collection and Review

Data for the FWLB (BWR) baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of FWLB events and total reactor critical years (rcrys) for the U.S. BWRs. Table 184 summarizes the data obtained from RADS and used in the FWLB (BWR) analysis.

| 10010 104. 1 W L1 | 5 (BWR) nequency at | au for buseline period | •                |                   |
|-------------------|---------------------|------------------------|------------------|-------------------|
| Data After Review |                     | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
| Events            | Reactor Critical    |                        |                  | with Events       |
|                   | Years (rcry)        |                        |                  |                   |
| 0                 | 989                 | 1988-2020              | 37               | 0.0%              |

Table 184. FWLB (BWR) frequency data for baseline period.

#### C-1.1.1.3 Industry-Average Baselines

Table 185 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| JNID/IL                | 1.99E-06 | 5.05E-04 | 1.94E-03 | Gamma        | 0.50 | 9.89E+02 |

### C-1.1.2 Feedwater Line Break at Pressurized Water Reactors (FWLB(PWR))

#### C-1.1.2.1 Initiating Event Description

From NUREG/CR-5750, the Feedwater Line Break at PWRs (FWLB[PWR]) initiating event is a break of a one-inch equivalent diameter or more in a feedwater or condensate line that contains main turbine working fluid at or above atmospheric saturation conditions. Examples include breeches of a pipe caused by a split, crack, weld failure, or circumferential break.

#### C-1.1.2.2 Data Collection and Review

Data for the FWLB (PWR) baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of FWLB events and total reactor critical years (rcrys) for the U.S. PWRs. Table 186 summarizes the data obtained from RADS and used in the FWLB (PWR) analysis.

| Table 186. F | WLB (PWR) frequency da | ata for baseline period |                  |                   |
|--------------|------------------------|-------------------------|------------------|-------------------|
| D            | Pata After Review      | <b>Baseline</b> Period  | Number of Plants | Percent of Plants |
| Events       | s Reactor Critical     |                         |                  | with Events       |
|              | Years (rcry)           |                         |                  |                   |
| 2            | 1,962                  | 1988-2020               | 78               | 2.6%              |
| C-1.1.2.3    | Industry-Average Bas   | selines                 |                  |                   |

Table 187 lists the industry-average frequency distribution. This industry-average frequency does not

account for any recovery.

Table 187. Selected industry distribution of  $\lambda$  for FWLB (PWR).

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| JNID/IL                | 2.92E-04 | 1.27E-03 | 2.82E-03 | Gamma        | 2.50 | 1.96E+03 |

# C-1.1.3 Steam Line Break Inside Containment at Pressurized Water Reactors (SLBIC(PWR))

#### C-1.1.3.1 Initiating Event Description

From NUREG/CR-5750, the Steam Line Break inside Containment at PWRs (SLBIC[PWR]) initiating event is a break of one-inch equivalent diameter or more in a steam line located inside the primary containment that contains main turbine working fluid at or above atmospheric saturation conditions.

This category applies to PWRs only. Examples include breeches of a pipe caused by a split, crack, weld failure, or circumferential break.

#### C-1.1.3.2 Data Collection and Review

Data for the SLBIC (PWR) baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of SLBIC events and total reactor critical years (rcrys) for the U.S. PWRs. Table 188 summarizes the data obtained from RADS and used in the SLBIC (PWR) analysis.

| Table 188. SLBIC | (PWR) frequ | ency data for ba | aseline period. |
|------------------|-------------|------------------|-----------------|
|------------------|-------------|------------------|-----------------|

| Data A | fter Review             | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|--------|-------------------------|------------------------|------------------|-------------------|
| Events | <b>Reactor Critical</b> |                        |                  | with Events       |
|        | Years (rcry)            |                        |                  |                   |
| 0      | 1,962                   | 1988-2020              | 78               | 0.0%              |

#### C-1.1.3.3 Industry-Average Baselines

Table 189 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Table 189. | Selected | industry | distribution | of $\lambda$ | for S | SLBIC | (PWR). |
|------------|----------|----------|--------------|--------------|-------|-------|--------|
| 10010 10/1 |          |          |              |              |       |       |        |

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| JNID/IL                | 1.00E-06 | 2.55E-04 | 9.80E-04 | Gamma        | 0.50 | 1.96E+03 |

# C-1.1.4 Steam Line Break Outside Containment at Boiling Water Reactors (SLBOC(BWR))

#### C-1.1.4.1 Initiating Event Description

From NUREG/CR-5750, the Steam Line Break outside Containment at BWRs (SLBOC[BWR]) initiating event is a break of one-inch equivalent diameter or more in a steam line located outside the primary containment that contains main turbine working fluid at or above atmospheric saturation conditions.

Examples include operation of rupture disks; and breeches of a pipe caused by a split, crack, weld failure, or circumferential break.

#### C-1.1.4.2 Data Collection and Review

Data for the SLBOC (BWR) baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of SLBOC events and total reactor critical years (rcrys) for the U.S. BWRs. Table 190 summarizes the data obtained from RADS and used in the SLBOC (BWR) analysis.

| Data A | fter Review      | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|--------|------------------|------------------------|------------------|-------------------|
| Events | Reactor Critical |                        |                  | with Events       |
|        | Years (rcry)     |                        |                  |                   |
| 2      | 989              | 1988-2020              | 37               | 5.4%              |

#### C-1.1.4.3 Industry-Average Baselines

Table 191 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Table 191. | Selected industry | distribution of | of $\lambda$ for | SLBOC (BWR). |
|------------|-------------------|-----------------|------------------|--------------|
|            |                   |                 |                  |              |

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| JNID/IL                | 5.79E-04 | 2.53E-03 | 5.60E-03 | Gamma        | 2.50 | 9.89E+02 |

## C-1.1.5 Steam Line Break Outside Containment at Pressurized Water Reactors (SLBOC(PWR))

#### C-1.1.5.1 Initiating Event Description

From NUREG/CR-5750, the Steam Line Break outside Containment at PWRs (SLBOC[PWR]) initiating event is a break of one-inch equivalent diameter or more in a steam line located outside the primary containment that contains main turbine working fluid at or above atmospheric saturation conditions.

Examples include operation of rupture disks and breeches of a pipe caused by a split, crack, weld failure, or circumferential break.

#### C-1.1.5.2 Data Collection and Review

Data for the SLBOC (PWR) baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of SLBOC events and total reactor critical years (rcrys) for the U.S. PWRs. Table 192 summarizes the data obtained from RADS and used in the SLBOC (PWR) analysis.

| Table 192. SLBOC (PWR) frequency data for baseline period | Table 192 | . SLBOC | (PWR) | frequency | data | for | baseline | period. |
|-----------------------------------------------------------|-----------|---------|-------|-----------|------|-----|----------|---------|
|-----------------------------------------------------------|-----------|---------|-------|-----------|------|-----|----------|---------|

| Data A | fter Review      | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|--------|------------------|------------------------|------------------|-------------------|
| Events | Reactor Critical |                        |                  | with Events       |
|        | Years (rcry)     |                        |                  |                   |
| 10     | 1,962            | 1988-2020              | 78               | 12.8%             |

#### C-1.1.5.3 Industry-Average Baselines

Table 193 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Table 193. | Selected industry | distribution | of $\lambda$ for | SLBOC | (PWR). |
|------------|-------------------|--------------|------------------|-------|--------|
|            |                   |              |                  |       |        |

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |       |          |
|------------------------|----------|----------|----------|--------------|-------|----------|
|                        |          |          |          | Туре         | α     | β        |
| JNID/IL                | 2.96E-03 | 5.35E-03 | 8.33E-03 | Gamma        | 10.50 | 1.96E+03 |

## C-1.2 Steam Generator Tube Rupture (SGTR)

#### C-1.2.1 Initiating Event Description

From NUREG/CR-5750, the Steam Generator Tube Rupture (STGR) initiating event is a rupture of one or more steam generator tubes that results in a loss of primary coolant to the secondary side of the steam generator at a rate greater than or equal to 100 gpm. An SGTR can occur as the initial plant fault, such as a tube rupture caused by high cycle fatigue or loose parts, or as a consequence of another IE. The latter case would be classified as a functional impact. This category applies to PWRs only. This category includes excessive leakage caused by the failure of a previous SGTR repair (i.e., leakage past a plug).

#### C-1.2.2 Data Collection and Review

Two methodologies are summarized in this section. For one approach, information for the SGTR baseline was obtained from NUREG-1829, "Estimating Loss-of-Coolant Accident (LOCA) Frequencies through the Elicitation Process" [C-7]. In that document, the SGTR frequency was estimated based on an expert elicitation process "... to consolidate service history data and PFM [probabilistic fracture mechanics] studies with knowledge of plant design, operation, and material performance."

From Table 7.3 in NUREG-1829, the mean frequency for SGTR of less than 100 gpm is 3.4E-3/reactor calendar year (rcy). To convert this to reactor critical years (rcrys), it was assumed that reactors are critical 90% of each year. Converting to rcrys, the result is

$$(3.40E-4/rcy)(1 rcy/0.9 rcry) = 3.78E-3/rcry$$

The associated error factor (95<sup>th</sup> percentile divided by median) associated with the SGTR category from NUREG-1829 is

$$(8.2E-3/rcy)/(2.6E-3/rcy) = 3.2$$

which converts to an  $\alpha$  of 1.6.

For the other approach, data for the SGTR baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. Results include total number of events and total rcrys for the U.S. commercial NPPs. Table 194 summarizes the data obtained from RADS and used in the SGTR analysis.

| Data A | fter Review      | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|--------|------------------|------------------------|------------------|-------------------|
| Events | Reactor Critical |                        |                  | with Events       |
|        | Years (rcry)     |                        |                  |                   |
| 3      | 1,962            | 1988-2020              | 78               | 3.8%              |

Table 194. STGR frequency data for baseline period.

#### C-1.2.3 Industry-Average Baselines

Table 195 lists the industry-average frequency distribution which used the IEDB results. This industry-average frequency does not account for any recovery.

Table 195. Selected industry distribution of  $\lambda$  for SGTR.

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| JNID/IL                | 5.53E-04 | 1.78E-03 | 3.59E-03 | Gamma        | 3.50 | 1.96E+03 |

### C-1.3 Loss of Coolant Accidents

Although no actual small LOCA or larger events have been recorded in U.S. operating experience data collected through 2020, numerous instances of reactor coolant leakage events—e.g., break flow within the capacity of normal makeup systems—were recorded. Failures of smaller pressure-boundary pipes—i.e., less than 2 inches—have not exceed the capacity of normal makeup systems. In general, most aging management and inspection programs focus on medium and large diameter piping (i.e., >4 inches in diameter). Such programs are more effective for larger diameter piping systems because these pipes are most likely to experiences leaks that can be detected and mitigated before component failure occurs. These factors lead to uncertainty in the small break LOCA frequency estimates, which are principally related to failure of smaller diameter piping (i.e., 2–4 inches diameter). It is therefore important that plant operators are cognizant of the reduced failure margins associated with small diameter piping and that they have aging management programs—including attributes related to inspection, monitoring, and mitigation—specifically targeted to provide reasonable assurance that failure will not occur in these systems.

### C-1.3.1 Large Loss-of-Coolant Accident at Boiling Water Reactors (LLOCA(BWR))

#### C-1.3.1.1 Initiating Event Description

The Large Loss-of-Coolant Accident at BWRs (LLOCA [BWR]) initiating event is defined as a break size greater than 6-inch inside diameter pipe equivalent for liquid and steam in the reactor coolant system pressure boundary.

#### C-1.3.1.2 Data Collection and Review

Information for the LLOCA (BWR) baseline was obtained from NUREG-1829, "Estimating Loss-of-Coolant Accident (LOCA) Frequencies through the Elicitation Process" [C-7]. The LLOCA frequency was estimated based on an expert elicitation process "... to consolidate service history data and PFM [probabilistic fracture mechanics] studies with knowledge of plant design, operation, and material performance."

Table 7.17 in NUREG-1829 presents frequencies for LOCAs exceeding various sizes by gallon per minute break flow and effective pipe size break. Six different sizes are listed, ranging from 0.5-inch diameter (>100 gpm) to 41-inch diameter (>500,000 gpm). The frequencies presented for each size indicate the frequency of LOCAs of that size or greater occurring. In addition, frequencies for each size are presented for 25 years of fleet operation, and for end-of-life conditions (40 years of operation). Because much of the reactor fleet now has over 35 to 40 years of operation, 40-year average fleet conditions were used.

Reference C-9 provides details for determining the break sizes for use in the SPAR models and for obtaining the related frequency information from NUREG-1829. The LLOCA break threshold for the SPAR models is 6 inches which requires interpolation between rows in Table 7.17. The LLOCA frequency is provided in reactor calendar years (rcys). To convert this to reactor critical years (rcrys), it was assumed that reactors are critical 90% of each year. Converting to rcrys and rounding using the NUREG/CR-6928 round off scheme results provided in Table 1-13.

Table 7.17 in NUREG-1829 includes excessive LOCA data (>41.0 inch break diameter) which should be removed from the LLOCA result, but the frequency is so small as to be negligible, and the interpolated result was used without removing the contribution from excessive LOCA.

NUREG-1829 provided an evaluation of industry conditions up to 2002. Additional operating experience has been recorded since then, and the NUREG-1829 result has been updated with no recorded events over 574 rcry of fleet operation for the date range from 2003 to 2020. The updated frequency is

provided in the second row of Table 197. The Bayes update row is the recommended value for the SPAR models.

| Data A | fter Review      | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|--------|------------------|------------------------|------------------|-------------------|
| Events | Reactor Critical |                        |                  | with Events       |
|        | Years (rcry)     |                        |                  |                   |
| 0      | 574              | 2003-2020              | 35               | 0.0%              |

#### Table 196. LLOCA (BWR) frequency data for baseline period.

#### C-1.3.1.3 Industry-Average Baselines

Table 197 lists the industry-average frequency distribution.

| Table 197. Selected industry distribution of $\lambda$ for LLOCA (BWR). |          |          |          |              |      |          |  |  |  |
|-------------------------------------------------------------------------|----------|----------|----------|--------------|------|----------|--|--|--|
| Analysis Type / Source                                                  | 5%       | Mean     | 95%      | Distribution |      |          |  |  |  |
|                                                                         |          |          |          | Туре         | α    | В        |  |  |  |
| Ref. 7                                                                  | 1.28E-09 | 1.20E-05 | 5.49E-05 | Gamma        | 0.30 | 2.50E+04 |  |  |  |
| Bayes Update                                                            | 1.25E-09 | 1.17E-05 | 5.36E-05 | Gamma        | 0.30 | 2.56E+04 |  |  |  |

Note: The percentiles and the mean of the distribution have units of events/rcry. The units for  $\beta$  are rcry.

#### C-1.3.2 Large Loss-of-Coolant Accident at Pressurized Water Reactors (LLOCA(PWR))

#### C-1.3.2.1 Initiating Event Description

The Large Loss-of-Coolant Accident at PWRs (LLOCA [PWR]) initiating event is defined as a break in the primary system boundary with an equivalent inside pipe diameter greater than 6 inches.

#### C-1.3.2.2 **Data Collection and Review**

Information for the LLOCA (PWR) baseline was obtained from NUREG-1829, "Estimating Loss-of-Coolant Accident (LOCA) Frequencies through the Elicitation Process" [C-7]. The LLOCA frequency was estimated based on an expert elicitation process ". . . to consolidate service history data and PFM [probabilistic fracture mechanics] studies with knowledge of plant design, operation, and material performance."

Table 7.19 of NUREG-1829 presents frequencies for PWR LOCAs exceeding various sizes by gallon per minute break flow and effective pipe size break without SGTR contributions. Six different sizes are listed, ranging from 0.5-inch diameter (>100 gpm) to 31-inch (>500,000 gpm). The frequencies presented for each size indicate the frequency of LOCAs of that size or greater. In addition, frequencies for each size are presented for an average of 25 years of operation, and for end-of-life conditions (40 years of operation). Because much of the reactor fleet now has over 35 to 40 years of operation, 40-year average fleet conditions were used.

Reference C-9 provides details for determining the break sizes for use in the SPAR models and for obtaining the related frequency information from NUREG-1829. The LLOCA break threshold for the SPAR models is 6 inches, which requires interpolation between rows in Table 7.19. The LLOCA frequency is provided in reactor calendar years (rcys). To convert this to reactor critical years (rcrys), it was assumed that reactors are critical 90% of each year. Converting to rcrys and rounding using the NUREG/CR-6928 round off scheme results provided in Table 198.

Table 7.19 of NUREG-1829 includes excessive LOCA data (>31.0 inch equivalent break diameter) which should be removed from the LLOCA result, but the frequency is so small as to be negligible, and the interpolated result was used without removing the contribution from excessive LOCA.

NUREG-1829 was an evaluation of industry conditions up to 2002. Additional operating experience has been recorded since then, and the NUREG-1829 result has been updated with no recorded events over 1,097 rcry of fleet operation for the date range between 2003 and 2020. The updated frequency is provided in Table 199. The Bayes update row is the recommended value for the SPAR models.

| Data A | Data After Review |           | Number of Plants | Percent of Plants |  |
|--------|-------------------|-----------|------------------|-------------------|--|
| Events | Reactor Critical  |           |                  | with Events       |  |
|        | Years (rcry)      |           |                  |                   |  |
| 0      | 1,097             | 2003-2020 | 70               | 0.0%              |  |

Table 198, LLOCA (PWR) frequency data for baseline period.

#### C-1.3.2.3 Industry-Average Baselines

Table 199 lists the industry-average frequency distribution.

| Table 199. Selected industry distribution of $\lambda$ for LLOCA (PWR). |          |          |          |              |      |          |  |  |  |  |
|-------------------------------------------------------------------------|----------|----------|----------|--------------|------|----------|--|--|--|--|
| Analysis Type / Source                                                  | 5%       | Mean     | 95%      | Distribution |      |          |  |  |  |  |
|                                                                         |          |          |          | Туре         | α    | В        |  |  |  |  |
| Ref. 7                                                                  | 6.42E-10 | 6.00E-06 | 2.74E-05 | Gamma        | 0.30 | 5.00E+04 |  |  |  |  |
| Bayes Update                                                            | 6.28E-10 | 5.87E-06 | 2.69E-05 | Gamma        | 0.30 | 5.11E+04 |  |  |  |  |

#### Note: The percentiles and the mean of the distribution have units of events/rcry. The units for $\beta$ are rcry.

#### C-1.3.3 Medium Loss-of-Coolant Accident at Boiling Water Reactors (MLOCA(BWR))

#### C-1.3.3.1 Initiating Event Description

The Medium Loss-of-Coolant Accident at BWRs (MLOCA [BWR]) initiating event is defined as a break in the reactor coolant system boundary with size between 2- and 6-inch inside diameter pipe equivalent.

#### C-1.3.3.2 Data Collection and Review

Information for the MLOCA (BWR) baseline was obtained from NUREG-1829, "Estimating Loss-of-Coolant Accident (LOCA) Frequencies Through the Elicitation Process" [C-7]. The MLOCA frequency was estimated based on an expert elicitation process "... to consolidate service history data and PFM [probabilistic fracture mechanics] studies with knowledge of plant design, operation, and material performance."

Table 7.17 in NUREG-1829 presents frequencies for LOCAs exceeding various sizes indicated by gallon per minute break flow and effective pipe size break. Six different sizes are listed, ranging from 0.5-inch diameter (>100 gpm) to 41-inch diameter (>500,000 gpm). The frequencies presented for each size indicate the frequency of LOCAs of that size or greater occurring. In addition, frequencies for each size are presented for current conditions (assuming an average of 25 years of fleet operation) and for end-of-life conditions (40 years of operation). For this estimate, frequencies appropriate for 40 years of fleet operation were used.

Reference C-9 provides details for determining the break sizes for use in the SPAR models and for obtaining related frequency information from NUREG-1829. The SPAR model break range is not provided in Table 7.17 of NUREG-1829 and must worked out by interpolation between the provided rows. Subtraction of the means from the interpolated results for 2- and 6-inch breaks gives the mean MLOCA frequency. The uncertainty distribution parameters are obtained from the difference in variances assuming lognormally-distributed difference in the means. A lognormal distribution with the resulting mean and variance is converted to an equivalent gamma distribution by setting means and error factors equal. Finally, the result is converted to reactor critical years (rcrys) assuming that reactors are critical 90% of each year and rounded using the round off scheme provided in NUREG/CR-6928. The resulting MLOCA frequency is provided in Table 201.

NUREG-1829 was an evaluation of industry conditions up to 2002. Additional operating experience has been recorded since then, and the NUREG-1829 result has been updated with no recorded events over 574 rcry of fleet operation for the date range 2003 to 2020 (see Table 200). The updated frequency is provided in the second row of Table 201. The Bayes Update row is the recommended value for the SPAR models.

|        | fter Review      | Baseline Period | Number of Plants | Percent of Plants |  |  |
|--------|------------------|-----------------|------------------|-------------------|--|--|
| Events | Reactor Critical |                 |                  | with Events       |  |  |
|        | Years (rcry)     |                 |                  |                   |  |  |
| 0      | 574              | 2003-2020       | 35               | 0.0%              |  |  |

Table 200. MLOCA (BWR) frequency data for baseline period

### C-1.3.3.3 Industry-Average Baselines

Table 201 lists the industry-average frequency distribution.

|                        | -        |          |          | · · · · · · · · · · · · · · · · · · · |      |          |
|------------------------|----------|----------|----------|---------------------------------------|------|----------|
| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution                          |      |          |
|                        |          |          |          | Туре                                  | α    | β        |
| Ref. 7                 | 1.04E-07 | 1.00E-04 | 4.15E-04 | Gamma                                 | 0.40 | 4.00E+03 |
| Bayes Update           | 9.07E-08 | 8.75E-05 | 3.64E-04 | Gamma                                 | 0.40 | 4.57E+03 |

Table 201. Selected industry distribution of  $\lambda$  for MLOCA (BWR).

Note: The percentiles and the mean of the distribution have units of events/rcry. The units for  $\beta$  are rcry.

# C-1.3.4 Medium Loss-of-Coolant Accident at Pressurized Water Reactors (MLOCA(PWR))

#### C-1.3.4.1 Initiating Event Description

The Medium Loss-of-Coolant Accident at PWRs (MLOCA [PWR]) initiating event is defined as a pipe break in the primary system boundary with an inside diameter between 2 and 6 inches.

#### C-1.3.4.2 Data Collection and Review

Information for the MLOCA (PWR) baseline was obtained from NUREG-1829, "Estimating Loss-of-Coolant Accident (LOCA) Frequencies Through the Elicitation Process" [C-7]. The MLOCA frequency was estimated based on an expert elicitation process "... to consolidate service history data and PFM [probabilistic fracture mechanics] studies with knowledge of plant design, operation, and material performance."

Table 7.19 in NUREG-1829 presents frequencies for PWR LOCAs exceeding various sizes indicated by gallon per minute break flow and effective pipe size break **without SGTR contributions**. Six different sizes are listed, ranging from 0.5-inch diameter (>100 gpm) to 31-inch diameter (>500,000 gpm). The frequencies presented for each size indicate the frequency of LOCAs of that size or greater occurring. In addition, frequencies for each size are presented for current conditions (assuming an average of 25 years of operation) and for end-of-life conditions (40 years of operation). For this estimate, frequencies for 40 years of operation were used.

Reference C-9 provides details for determining the break sizes for use in the SPAR models and for obtaining the related frequency information from NUREG-1829. The SPAR-model break range is not provided in Table 7.19 and must be worked out by interpolation between the provided rows. Subtraction of the means from the interpolated results for 2- and 6-inch breaks gives the mean MLOCA frequency. The uncertainty distribution parameters are obtained from the difference in variances assuming lognormally distributed difference in the means. The resulting lognormal distribution is converted to an equivalent gamma distribution by setting means and error factors equal. Finally, the result is converted to reactor critical years (rcrys) assuming that reactors are critical 90% of each year and rounded using the round off scheme provided in NUREG/CR-6928. The resulting MLOCA frequency is provided in Table 203.

NUREG-1829 was an evaluation of industry conditions up to 2002. Additional operating experience has been recorded since then, and the NUREG-1829 result has been updated with no recorded events over 1,097 rcry of fleet operation for the date range between 2003 and 2020 (see Table 202). The updated frequency is provided in the second row of Table 203. The Bayes update row is the recommended value for the SPAR models.

|        | fter Review      | Baseline Period | Number of Plants | Percent of Plants |
|--------|------------------|-----------------|------------------|-------------------|
| Events | Reactor Critical |                 |                  | with Events       |
|        | Years (rcry)     |                 |                  |                   |
| 0      | 1,097            | 2003-2020       | 70               | 0.0%              |

Table 202. MLOCA (PWR) frequency data for baseline period

### C-1.3.4.3 Industry-Average Baselines

Table 203 lists the industry-average frequency distribution.

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| Ref. C-7               | 2.68E-08 | 2.50E-04 | 1.14E-03 | Gamma        | 0.30 | 1.20E+03 |
| Bayes Update           | 1.40E-08 | 1.31E-04 | 5.97E-04 | Gamma        | 0.30 | 2.30E+03 |

Table 203. Selected industry distribution of  $\lambda$  for MLOCA (PWR).

Note: The percentiles and the mean of the distribution have units of events/rcry. The units for  $\beta$  are rcry.

#### C-1.3.5 Small Loss-of-Coolant Accident at Boiling Water Reactors (SLOCA(BWR))

#### C-1.3.5.1 Initiating Event Description

The Small Loss-of-Coolant Accident at BWRs (SLOCA[BWR]) initiating event is defined as a break size between 0.5-inch inside diameter pipe equivalent and 2-inch inside diameter pipe equivalent in the reactor coolant system pressure boundary.

#### C-1.3.5.2 Data Collection and Review

Information for the SLOCA (BWR) baseline was obtained from NUREG-1829, "Estimating Loss-of-Coolant Accident (LOCA) Frequencies Through the Elicitation Process" [C-7]. The LOCA frequency was estimated based on an expert elicitation process "... to consolidate service history data and PFM [probabilistic fracture mechanics] studies with knowledge of plant design, operation, and material performance."

Table 7.17 of NUREG-1829 presents frequencies for LOCAs exceeding various sizes indicated by gallon per minute break flow and effective pipe size break. Six different sizes are listed, ranging from 0.5-inch diameter (>100 gpm) to 41-inch diameter (> 500,000 gpm). The frequencies presented for each size indicate the frequency of LOCAs of that size or greater occurring. In addition, frequencies for each size are presented for current day conditions (assuming an average of 25 years of fleet operation) and for end-of-life conditions (40 years of operation). For this estimate frequencies for 40 years of fleet operation were used.

Reference C-9 provides details for determining the break sizes for use in the SPAR models and for obtaining the related frequency information from NUREG-1829. The SPAR model break range is not provided in Table 7.17 of NUREG-1829 and must worked out by interpolation between the provided rows. Subtraction of the means from 0.5-inch break and the interpolated 2-inch break gives the mean SLOCA frequency. The uncertainty distribution parameters are obtained from the difference in variances assuming lognormally-distributed difference in the means. A lognormal distribution with the resulting mean and variance is converted to an equivalent gamma distribution by setting means and error factors equal. Finally, the result is converted to reactor critical years (rcrys) assuming that reactors are critical 90% of each year and rounded using the round off scheme provided in NUREG/CR-6928. The resulting SLOCA frequency is provided in Table 205.

NUREG-1829 was an evaluation of industry conditions up to 2002. Additional operating experience has been recorded since then, and the NUREG-1829 result has been updated with no recorded event and 574 rcry of fleet operation for the date range 2003 to 2020 (see Table 204). The updated frequency is provided in the second row of Table 205. The Bayes update row is the recommended value for the SPAR models.

| 1 abic 204. BLO | Table 204. SLOCA (DWR) frequency data for baseline period. |           |                  |                   |  |  |  |  |  |  |
|-----------------|------------------------------------------------------------|-----------|------------------|-------------------|--|--|--|--|--|--|
| Data A          | Data After Review                                          |           | Number of Plants | Percent of Plants |  |  |  |  |  |  |
| Events          | Reactor Critical                                           |           |                  | with Events       |  |  |  |  |  |  |
|                 | Years (rcry)                                               |           |                  |                   |  |  |  |  |  |  |
| 0               | 574                                                        | 2003-2020 | 35               | 0.0%              |  |  |  |  |  |  |

Table 204. SLOCA (BWR) frequency data for baseline period.

#### C-1.3.5.3 Industry-Average Baselines

Table 205 lists the industry-average frequency distribution.

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | В        |
| Ref. C-7               | 6.22E-07 | 6.00E-04 | 2.49E-03 | Gamma        | 0.40 | 6.67E+02 |
| Bayes Update           | 3.34E-07 | 3.22E-04 | 1.34E-03 | Gamma        | 0.40 | 1.24E+03 |

Table 205. Selected industry distribution of  $\lambda$  for SLOCA (BWR).

Note: The percentiles and the mean of the distribution have units of events/rcry. The units for  $\beta$  are rcry.

#### C-1.3.6 Small Loss-of-Coolant Accident at Pressurized Water Reactors (SLOCA(PWR))

#### C-1.3.6.1 Initiating Event Description

The Small Loss-of-Coolant Accident at PWRs (SLOCA[PWR]) initiating event is defined as a break in the primary system pressure boundary with an equivalent inside pipe diameter between 0.5 and 2 inches.

### C-1.3.6.2 Data Collection and Review

Information for the SLOCA (PWR) baseline was obtained from NUREG-1829, "Estimating Loss-of-Coolant Accident (LOCA) Frequencies Through the Elicitation Process" [C-7]. The LOCA frequency was estimated based on an expert elicitation process "... to consolidate service history data and PFM [probabilistic fracture mechanics] studies with knowledge of plant design, operation, and material performance."

Table 7.19 of NUREG-1829 presents frequencies for PWR LOCAs exceeding various sizes indicated by gallon per minute break flow and effective pipe size break **without SGTR contributions**. Six different sizes are listed, ranging from 0.5-inch diameter (>100 gpm) to 31-inch diameter (>500,000 gpm). The frequencies presented for each size indicate the frequency of LOCAs of that size or greater occurring. In addition, frequencies for each size are presented for current day conditions (assuming an average of 25 years of fleet operation) and for end-of-life conditions (40 years of operation). For this estimate, frequencies for 40 years of fleet operation were used.

Reference C-9 provides details for determining the break sizes for use in the SPAR models and for obtaining the related frequency information from NUREG-1829. The SPAR model break range is not provided in Table 7.19 and must be worked out by interpolation between the provided rows. Subtraction of the means from 0.5-inch break and the interpolated 2-inch break gives the mean SLOCA frequency. The uncertainty distribution parameters are obtained from the difference in variances assuming lognormally-distributed difference in the means. A lognormal distribution with the resulting mean and variance is converted to an equivalent gamma distribution by setting means and error factors equal. Finally, the result is converted to reactor critical years (rcrys) assuming that reactors are critical 90% of each year, and rounded using the round off scheme provided in NUREG/CR-6928. The resulting SLOCA frequency is provided in Table 207.

NUREG-1829 was an evaluation of industry conditions up to 2002. Additional operating experience has been recorded since then, and the NUREG-1829 result has been updated with no recorded events over 1,097 rcry of fleet operation for the date range 2003 to 2020 (see Table 206). The updated frequency is provided in the second row (labeled as "Bayes Update") of Table 207.

| Data After Review |                  | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|-------------------|------------------|------------------------|------------------|-------------------|
| Events            | Reactor Critical |                        |                  | with Events       |
|                   | Years (rcry)     |                        |                  |                   |
| 0                 | 1,097            | 2003-2020              | 70               | 0.0%              |

Table 206. SLOCA (PWR) frequency data for baseline period.

### C-1.3.6.3 Industry-Average Baselines

Table 207 lists the industry-average frequency distribution.

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| Ref. C-7               | 2.07E-06 | 2.00E-03 | 8.16E-03 | Gamma        | 0.40 | 2.00E+02 |
| Bayes Update           | 3.19E-07 | 3.09E-04 | 1.28E-03 | Gamma        | 0.40 | 1.30E+03 |

Table 207. Selected industry distribution of  $\lambda$  for SLOCA (PWR).

# C-1.3.7 Very Small Loss-of-Coolant Accident at Boiling Water Reactors (VSLOCA(BWR))

#### C-1.3.7.1 Initiating Event Description

From NUREG/CR-5750, the Very Small Loss of Coolant Accident at BWRs (VSLOCA[BWR]) initiating event is a pipe break or component failure that results in a loss of primary coolant between 10 and 100 gpm, but does not require the automatic or manual actuation of high-pressure injection systems. Examples include PWR reactor coolant pump or BWR recirculating pump seal failures, valve packing failures, steam generator tube leaks, and instrument line fitting failures.

#### C-1.3.7.2 Data Collection and Review

Data for the VSLOCA (BWR) baseline, 1992–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Table 208 summarizes the data obtained from RADS and used in the VSLOCA (BWR) analysis.

| Data A | fter Review      | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|--------|------------------|------------------------|------------------|-------------------|
| Events | Reactor Critical |                        |                  | with Events       |
|        | Years (rcry)     |                        |                  |                   |
| 2      | 891              | 19922020               | 37               | 5.4%              |

Table 208. VSLOCA (BWR) frequency data for baseline period.

#### C-1.3.7.3 Industry-Average Baselines

Table 209 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

|                        | abay albarioa | men er n fer | ны сы сы | 11).         |      |          |
|------------------------|---------------|--------------|----------|--------------|------|----------|
| Analysis Type / Source | 5%            | Mean         | 95%      | Distribution |      |          |
|                        |               |              |          | Туре         | α    | β        |
| JNID/IL                | 6.43E-04      | 2.81E-03     | 6.21E-03 | Gamma        | 2.50 | 8.91E+02 |

#### Table 209. Selected industry distribution of $\lambda$ for VSLOCA (BWR).

# C-1.3.8 Very Small Loss-of-Coolant Accident at Pressurized Water Reactors (VSLOCA(PWR))

#### C-1.3.8.1 Initiating Event Description

From NUREG/CR-5750, the Very Small Loss of Coolant Accident at PWRs (VSLOCA[PWR]) initiating event is a pipe break or component failure that results in a loss of primary coolant between 10 to 100 gpm, but does not require the automatic or manual actuation of high-pressure injection systems. Examples include the PWR reactor coolant pumps or BWR recirculating pump seal failures, valve packing failures, steam generator tube leaks, and instrument line fitting failures.

#### C-1.3.8.2 Data Collection and Review

Data for the VSLOCA baseline, 1992–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Table 210 summarizes the data obtained from RADS and used in the VSLOCA (PWR) analysis.

| Data A | Data After Review |           | Number of Plants | Percent of Plants |
|--------|-------------------|-----------|------------------|-------------------|
| Events | Reactor Critical  |           |                  | with Events       |
|        | Years (rcry)      |           |                  |                   |
| 0      | 1,745             | 1992-2020 | 76               | 0.0%              |

Table 210. VSLOCA (PWR) frequency data for baseline period.

#### C-1.3.8.3 Industry-Average Baselines

Table 211 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| JNID/IL                | 1.13E-06 | 2.87E-04 | 1.10E-03 | Gamma        | 0.50 | 1.74E+03 |

Table 211. Selected industry distribution of  $\lambda$  for VSLOCA (PWR).

#### C-1.3.9 Stuck Open Relief Valve at Boiling Water Reactors (SORV(BWR))

#### C-1.3.9.1 Initiating Event Description

From NUREG/CR-5750, the Stuck Open Relief Valve at BWRs (SORV [BWR]) initiating event is a failure of one primary system safety and/or relief valve (SRV) to fully close, resulting in the loss of primary coolant. The valves included in this category are BWR main steam line safety valves and automatic depressurization system relief valves. The stuck open SRV may or may not cause the automatic or manual actuation of high-pressure injection systems.

This category includes a stuck open valve that cannot be subsequently closed upon manual demand or does not subsequently close on its own immediately after the reactor trip. The mechanism that opens the valve is not a defining factor. The different mechanisms than can open an SRV are transient-induced opening, manual opening during valve testing, and spurious opening.

#### C-1.3.9.2 Data Collection and Review

Data for the SORV (BWR) baseline, 1994–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. The SPAR models use two SORV initiating events in the models: a single SORV (SORV1) and two or more SORVs (SORV2). Table 212 summarizes the data obtained from RADS and used in the SORV (BWR) analysis.

| Event Type | Data A | fter Review      | Baseline  | Number of | Percent of  |
|------------|--------|------------------|-----------|-----------|-------------|
| _          | Events | Reactor Critical | Period    | Plants    | Plants with |
|            |        | Years (rcry)     |           |           | Events      |
| SORV1      | 7      | 839              | 1994-2020 | 37        | 16.2%       |
| SORV2      | 0      | 809              | 1994-2020 | 37        | 0.0%        |

Table 212. SORV (BWR) frequency data for baseline period.

#### C-1.3.9.3 Industry-Average Baselines

Table 213 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| 14010 215.4 | Tuble 219. Selected industry distribution of <i>N</i> for SOLV (DVIR). |          |          |          |       |          |          |  |  |
|-------------|------------------------------------------------------------------------|----------|----------|----------|-------|----------|----------|--|--|
| Event       | Analysis Type / Source                                                 | 5%       | Mean     | 95%      |       | Distribu | tion     |  |  |
| Туре        |                                                                        |          |          |          | Туре  | α        | β        |  |  |
| SORV1       | EB/PL/KS                                                               | 1.30E-03 | 8.32E-03 | 2.03E-02 | Gamma | 1.82     | 2.19E+02 |  |  |
| SORV2       | JNID/IL                                                                | 2.34E-06 | 5.96E-04 | 2.29E-03 | Gamma | 0.50     | 8.39E+02 |  |  |

Table 213. Selected industry distribution of  $\lambda$  for SORV (BWR).

Note: EB/PL/KS is an empirical Bayes analysis at the plant level with the Kass-Steffey adjustment. JNID/IL is a Jeffrey's noninformative distribution at the industry level. The percentiles and the mean of the distribution have units of events/rcry. The units for  $\beta$  are rcry.

#### C-1.3.10 Stuck Open Relief Valve at Pressurized Water Reactors (SORV(PWR))

#### C-1.3.10.1 Initiating Event Description

From NUREG/CR-5750, the Stuck Open Relief Valve at PWRs (SORV [PWR]) initiating event is a failure of one primary system safety and/or relief valve to fully close, resulting in the loss of primary coolant. The valves included in this category are PWR pressurizer code safety valves (SVVs). The stuck open SVV may or may not cause the automatic or manual actuation of high-pressure injection systems.

#### C-1.3.10.2 Data Collection and Review

Data for the SORV (PWR) baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Results are shown for two SORV IEs: a single SORV (SORV1) and two or more SORVs (SORV2). Table 214 summarizes the data obtained from RADS and used in the SORV (PWR) analysis.

| Event Type | Data A | fter Review      | Baseline  | Number of | Percent of  |
|------------|--------|------------------|-----------|-----------|-------------|
|            | Events | Reactor Critical | Period    | Plants    | Plants with |
|            |        | Years (rcry)     |           |           | Events      |
| SORV1      | 2      | 1,962            | 1988-2020 | 78        | 2.6%        |
| SORV2      | 0      | 1,962            | 1988-2020 | 78        | 0.0%        |

Table 214. SORV (PWR) frequency data for baseline period.

#### C-1.3.10.3 Industry-Average Baselines

Table 215 lists the industry-average frequency distribution. With only two events, an empirical Bayes analysis could not be performed. Therefore, the SCNID analysis results were used. This industry-average frequency does not account for any recovery.

Table 215. Selected industry distribution of  $\lambda$  for SORV (PWR).

| Event | Analysis Type / Source | 5%       | Mean     | 95%      |       | Distribu | tion     |
|-------|------------------------|----------|----------|----------|-------|----------|----------|
| Туре  |                        |          |          |          | Туре  | α        | β        |
| SORV1 | JNID/IL                | 2.92E-04 | 1.27E-03 | 2.82E-03 | Gamma | 2.50     | 1.96E+03 |
| SORV2 | JNID/IL                | 1.00E-06 | 2.55E-04 | 9.80E-04 | Gamma | 0.50     | 1.96E+03 |

# C-1.3.11 Interfacing System Loss-of-Coolant Accident at Boiling Water Reactors (ISLOCA(BWR))

#### C-1.3.11.1 Initiating Event Description

From NUREG/CR-5750, the Interfacing System LOCA (ISLOCA) initiating event is a backflow of high-pressure coolant from the primary system through low-pressure system piping that results in the breach of the pipe or component.

#### C-1.3.11.2 Data Collection and Review

Data for the ISLOCA (BWR) baseline, 1988–2020, were obtained from the IEDB accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Table 216 summarizes the data obtained from RADS and used in the ISLOCA (BWR) analysis.

| Data A | fter Review      | Baseline Period | Number of Plants | Percent of Plants |
|--------|------------------|-----------------|------------------|-------------------|
| Events | Reactor Critical |                 |                  | with Events       |
|        | Years (rcry)     |                 |                  |                   |
| 0      | 989              | 1988-2020       | 37               | 0.0%              |

## C-1.3.11.3 Industry-Average Baselines

Table 217 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

Table 217. Selected industry distribution of  $\lambda$  for ISLOCA (BWR).

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| JNID/IL                | 1.99E-06 | 5.05E-04 | 1.94E-03 | Gamma        | 0.50 | 9.89E+02 |

# C-1.3.12 Interfacing System Loss-of-Coolant Accident at Pressurized Water Reactors (ISLOCA(PWR))

#### C-1.3.12.1 Initiating Event Description

From NUREG/CR-5750, the Interfacing System LOCA (ISLOCA) initiating event is a backflow of high-pressure coolant from the primary system through low-pressure system piping that results in the breach of the pipe or component.

#### C-1.3.12.2 Data Collection and Review

Data for the ISLOCA (PWR) baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Table 218 summarizes the data obtained from RADS and used in the ISLOCA (PWR) analysis.

| Data A | fter Review                      | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|--------|----------------------------------|------------------------|------------------|-------------------|
| Events | Reactor Critical<br>Years (rcry) |                        |                  | with Events       |
| 0      | 1,962                            | 1988–2020              | 78               | 0.0%              |

Table 218. ISLOCA (PWR) frequency data for baseline period.

#### C-1.3.12.3 Industry-Average Baselines

Table 219 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

Table 219. Selected industry distribution of  $\lambda$  for ISLOCA (PWR).

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| JNID/IL                | 1.00E-06 | 2.55E-04 | 9.80E-04 | Gamma        | 0.50 | 1.96E+03 |

Note: JNID/IL is a Jeffrey's noninformative distribution at the industry level. The percentiles and the mean of the distribution have units of events/rcry. The units for  $\beta$  are rcry.

#### C-1.3.13 Reactor Coolant Pump Seal LOCA (RCPLOCA)

#### C-1.3.13.1 Initiating Event Description

From NUREG/CR-5750, the Reactor Coolant Pump Seal LOCA (RCPLOCA) initiating event is a catastrophic failure the reactor coolant pump seal assembly that results in a primary coolant leak into the primary containment at a rate greater than 100 gpm. This category applies to PWRs only.

#### C-1.3.13.2 Data Collection and Review

Data for the RCPLOCA baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Table 220 summarizes the data obtained from RADS and used in the RCPLOCA analysis.

| Table 220. RCPLOCA | frequency data | for baseline pe | riod. |
|--------------------|----------------|-----------------|-------|
|                    |                |                 |       |

| Data A | fter Review      | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|--------|------------------|------------------------|------------------|-------------------|
| Events | Reactor Critical |                        |                  | with Events       |
|        | Years (rcry)     |                        |                  |                   |
| 0      | 1,962            | 1988-2020              | 78               | 0.0%              |

## C-1.3.13.3 Industry-Average Baselines

Table 221 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| JNID/IL                | 1.00E-06 | 2.55E-04 | 9.80E-04 | Gamma        | 0.50 | 1.96E+03 |

Table 221. Selected industry distribution of  $\lambda$  for RCPLOCA.

## C-1.3.14 Excessive Loss of Coolant Event (Vessel Rupture) (XLOCA)

## C-1.3.14.1 Initiating Event Description

Excessive Loss of Coolant Event (Vessel Rupture) (XLOCA) represents a LOCA of such size as to be beyond the capacity of safety systems to protect the reactor core. This is considered to be a break of equivalent pipe diameter of greater than 41 inches for BWRs and 31 inches for PWRs.

## C-1.3.14.2 Data Collection and Review

WASH-1285, *The Integrity of Reactor Vessels for Light-Water Power Reactors* [C-10] provided the 1.0E-7 per rcry estimate currently used in the SPAR models. A more current estimate is provided by NUREG-1829, "Estimating Loss-of-Coolant Accident (LOCA) Frequencies Through the Elicitation Process" [C-7]. The LOCA frequency was estimated based on an expert elicitation process "... to consolidate service history data and PFM [probabilistic fracture mechanics] studies with knowledge of plant design, operation, and material performance."

Tables 7.17 and 7.19 of NUREG-1829 present frequencies for LOCAs exceeding various sizes indicated by gallon per minute break flow and effective pipe size break. XLOCA is represented by the last entry in the tables, 41-inch breaks for BWRs and 31-inch diameter for PWRs. The frequencies are presented both for current conditions (assuming an average of 25 years of fleet operation) and for end-of-life conditions (40 years of operation). For this estimate, frequencies for 40 years of fleet operation were used. The frequencies are provided in reactor calendar years (rcy) and are converted to reactor critical years (rcry) assuming that reactors are critical 90% of each year, and rounded using the round off scheme provided in NUREG/CR-6928. The resulting XLOCA frequencies are provided in Table 222.

The WASH-1285 [C-10] result is still the recommended value. The other values are provided for reference.

### C-1.3.14.3 Industry-Average Baselines

Table 222 lists the industry-average frequency distribution.

| Analysis | Plant Type |          |          |          |       | Distribut | ion      |
|----------|------------|----------|----------|----------|-------|-----------|----------|
| Type /   |            | 5%       | Mean     | 95%      | Туре  | α         | β        |
| Source   |            |          |          |          |       |           | -        |
| Ref. 7   | BWR        | 1.02E-14 | 1.00E-08 | 5.15E-08 | Gamma | 0.20      | 2.00E+07 |
| Ref. 7   | PWR        | 8.16E-14 | 8.00E-08 | 4.12E-07 | Gamma | 0.20      | 2.50E+06 |
| Ref. 10  | ALL        | 1.07E-11 | 1.00E-07 | 4.57E-07 | Gamma | 0.30      | 3.00E+06 |

Note: The percentiles and the mean of the distribution have units of events/rcry. The units for  $\beta$  are rcry.

# C-2. TRANSIENTS

The general transient categories result in automatic or manual reactor trips but do not degrade safety system response.

# C-2.1 General Transient

### C-2.1.1 General Transient at Boiling Water Reactors (TRANS(BWR))

#### C-2.1.1.1 Initiating Event Description

From NUREG/CR-5750, the General Transient at BWRs (TRANS [BWR]initiating event is a general transient that results in automatic or manual reactor trips but does not degrade safety system response.

#### C-2.1.1.2 Data Collection and Review

Data for the TRAN (BWR) baseline, 2011–2020, were obtained from the IEDB, accessed using the RADS database. Only initial plant fault events, as defined in NUREG/CR-5750, were used. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. These results also include the individual plant results for the same period. Table 223 summarizes the data obtained from RADS and used in the TRANS (BWR) analysis.

| Table 223. TRANS (BWR) frequency data for baselin |
|---------------------------------------------------|
|---------------------------------------------------|

| Data After Review |                  | <b>Baseline</b> Period | Number of Plants | Percent of Plants |  |
|-------------------|------------------|------------------------|------------------|-------------------|--|
| Events            | Reactor Critical |                        |                  | with Events       |  |
|                   | Years (rcry)     |                        |                  |                   |  |
| 173               | 317              | 20112020               | 35               | 88.6%             |  |

### C-2.1.1.3 Industry-Average Baselines

Table 224 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Table 224. Selected | industry | distribution | of $\lambda$ for | TRANS ( | (BWR). |
|---------------------|----------|--------------|------------------|---------|--------|
|---------------------|----------|--------------|------------------|---------|--------|

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| EB/PL/KS               | 7.98E-02 | 5.55E-01 | 1.38E+00 | Gamma        | 1.71 | 3.08E+00 |

## C-2.1.2 General Transient at Pressurized Water Reactors (TRANS(PWR))

## C-2.1.2.1 Initiating Event Description

From NUREG/CR-5750, the General Transient at PWRs (TRANS [PWR]) initiating event is a general transient that results in automatic or manual reactor trips but does not degrade safety system response.

### C-2.1.2.2 Data Collection and Review

Data for the TRANS (PWR) baseline, 2011–2020, were obtained from the IEDB, as accessed using the RADS database. Only initial plant fault events, as defined in Reference C-3, were used. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. These results also include the individual plant results for the same period. Table 225 summarizes the data obtained from RADS and used in the TRANS (PWR) analysis.

| Data After Review |                                  | <b>Baseline Period</b> | Number of | Percent of Plants |
|-------------------|----------------------------------|------------------------|-----------|-------------------|
| Events            | Reactor Critical<br>Years (rcry) |                        | Plants    | with Events       |
| 300               | <u>597</u>                       | 20112020               | 69        | 91.3%             |

Table 225. TRANS (PWR) frequency data for baseline period.

### C-2.1.2.3 Industry-Average Baselines

Table 226 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

Table 226. Selected industry distribution of  $\lambda$  for TRANS (PWR).

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| EB/PL/KS               | 1.39E-01 | 5.18E-01 | 1.09E+00 | Gamma        | 2.94 | 5.68E+00 |

# C-2.2 Loss of Condenser Heat Sink

### C-2.2.1 Loss of Condenser Heat Sink at Boiling Water Reactors (LOCHS(BWR))

#### C-2.2.1.1 Initiating Event Description

From NUREG/CR-5750, the Loss of Condenser Heat Sink at BWRs (LOCHS [BWR]) initiating event is defined as at least one of the following:

- A complete closure of at least one main steam isolation valve in each main steam line.
- A decrease in condenser vacuum that leads to an automatic or manual reactor trip, or manual turbine trip; or a complete loss of condenser vacuum that prevents the condenser from removing decay heat after a reactor trip. In addition, reactor trips that are the indirect result of a low condenser vacuum, such as a loss of feedwater caused by condensate pumps tripping on high condensate temperature because of loss of vacuum, are counted.
- The failure of one or more turbine bypass valves to maintain the reactor pressure and temperature at the desired operating condition.

#### C-2.2.1.2 Data Collection and Review

Data for the LOCHS (BWR) baseline, 2009–2020, were obtained from the IEDB, accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Table 227 summarizes the data obtained from RADS and used in the LOCHS (BWR) analysis.

| Tuble 227         |            | nequency a             | ada for baseline peri | 04.              |                   |  |
|-------------------|------------|------------------------|-----------------------|------------------|-------------------|--|
| Data After Review |            | Review Baseline Period |                       | Number of Plants | Percent of Plants |  |
| Eve               | nts Reacto | or Critical            |                       |                  | with Events       |  |
|                   | Year       | rs (rcry)              |                       |                  |                   |  |
| 10                | 6          | 382                    | 20092020              | 35               | 34.3%             |  |

Table 227. LOCHS (BWR) frequency data for baseline period.

#### C-2.2.1.3 Industry-Average Baselines

Table 228 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Table 228. Selected industry distribution of $\lambda$ for LOCHS (BWR). |          |          |          |              |      |          |  |
|-------------------------------------------------------------------------|----------|----------|----------|--------------|------|----------|--|
| Analysis Type / Source                                                  | 5%       | Mean     | 95%      | Distribution |      |          |  |
|                                                                         |          |          |          | Туре         | α    | β        |  |
| EB/PL/KS                                                                | 1.77E-02 | 4.19E-02 | 7.41E-02 | Gamma        | 5.68 | 1.36E+02 |  |

## C-2.2.2 Loss of Condenser Heat Sink at Pressurized Water Reactors (LOCHS(PWR))

### C-2.2.2.1 Initiating Event Description

From NUREG/CR-5750, the Loss of Condenser Heat Sink at PWRs (LOCHS [PWR]) initiating event is defined as at least one of the following:

- A complete closure of at least one main steam isolation valve in each main steam line.
- A decrease in condenser vacuum that leads to an automatic or manual reactor trip, or manual turbine trip; or a complete loss of condenser vacuum that prevents the condenser from removing decay heat after a reactor trip. In addition, reactor trips that are the indirect result of a low condenser vacuum, such as a loss of feedwater caused by condensate pumps tripping on high condensate temperature because of loss of vacuum, are counted.
- The failure of one or more turbine bypass valves to maintain the reactor pressure and temperature at the desired operating condition.

### C-2.2.2.2 Data Collection and Review

Data for the LOCHS (PWR), 2006–2020, baseline were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Table 229 summarizes the data obtained from RADS and used in the LOCHS (PWR) analysis.

| Data A | Data After Review |           | Number of Plants | Percent of Plants |
|--------|-------------------|-----------|------------------|-------------------|
| Events | Reactor Critical  |           |                  | with Events       |
|        | Years (rcry)      |           |                  |                   |
| 23     | 910               | 2006-2020 | 70               | 27.1%             |

Table 229. LOCHS (PWR) frequency data for baseline period.

## C-2.2.2.3 Industry-Average Baselines

Table 230 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Analysis         | 5%       | Mean     | 95%      | 1().  | Distribution | 1        |
|------------------|----------|----------|----------|-------|--------------|----------|
| Type /<br>Source |          |          |          | Туре  | α            | β        |
| EB/PL/KS         | 1.04E-02 | 2.53E-02 | 4.57E-02 | Gamma | 5.35         | 2.11E+02 |

Table 230. Selected industry distribution of  $\lambda$  for LOCHS (PWR).

# C-2.3 Loss of Main Feedwater (LOMFW)

## C-2.3.1 Initiating Event Description

From NUREG/CR-5750, the Loss of Main Feedwater (LOMFW) initiating event is a complete loss of all main feedwater flow. Examples include the following: trip of the only operating feedwater pump while operating at reduced power; loss of a startup or an auxiliary feedwater pump normally used during plant startup; loss of all operating feed pumps due to trips caused by low suction pressure, loss of seal water, or high water level (BWR vessel level or PWR steam generator level); anticipatory reactor trip due to loss of all operating feed pumps; and manual reactor trip in response to feed problems characteristic of a total loss of feedwater flow, but prior to automatic reactor protection system signals. This category also includes the inadvertent isolation or closure of all feedwater control valves prior to the reactor trip; however, a main feedwater isolation caused by valid automatic system response after a reactor trip is not included. This category does not include the total loss of feedwater caused by the loss of offsite power.

### C-2.3.2 Data Collection and Review

Data for the LOMFW baseline, 2011–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Table 231 summarizes the data obtained from RADS and used in the LOMFW analysis.

| Data After Review |                  | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|-------------------|------------------|------------------------|------------------|-------------------|
| Events            | Reactor Critical |                        |                  | with Events       |
|                   | Years (rcry)     |                        |                  |                   |
| 20                | 913              | 2011-2020              | 104              | 16.3%             |

#### Table 231. LOMFW frequency data for baseline period.

### C-2.3.3 Industry-Average Baselines

Table 232 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Table 232. Selected industry distribution of $\lambda$ for LOMFW. |
|-------------------------------------------------------------------|
|-------------------------------------------------------------------|

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      | ion      |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| EB/PL/KS               | 1.18E-03 | 2.19E-02 | 6.51E-02 | Gamma        | 1.02 | 4.66E+01 |

# C-3. LOSS OF SUPPORT SYSTEMS

# C-3.1 Loss of Safety-Related Cooling Water

## C-3.1.1 Loss of Standby (Emergency) Service Water (LOSWS)

## C-3.1.1.1 Initiating Event Description

From NUREG/CR-5750, the Loss of Service Water System (LOSWS) initiating event is a total loss of service water flow. The service water system (SWS) can be an open-cycle or a closed-cycle cooling water system. An open-cycle SWS takes suction from the plant's ultimate heat sink (e.g., the ocean, bay, lake, pond or cooling towers), removes heat from safety-related systems and components, and discharges the water back to the ultimate heat sink. A closed-cycle or intermediate SWS removes heat from safety-related equipment and discharges the heat through a heat exchanger to an open-cycle service water system.

For this report, the definition was specialized to include only emergency service water (ESW) systems. Therefore, the initiating event is Loss of Emergency Service Water (LOESW).

## C-3.1.1.2 Data Collection and Review

Table 233 I OESW frequency data

Data for the LOESW baseline, 1988–2020, were obtained from the IEDB, accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. These results also include the individual plant results for the same period. Table 233 summarizes the data obtained from RADS and used in the LOESW analysis.

|        | fter Review      | Baseline Period | Number of Plants | Percent of Plants |
|--------|------------------|-----------------|------------------|-------------------|
| Events | Reactor Critical |                 |                  | with Events       |
|        | Years (rcry)     |                 |                  |                   |
| 1      | 2,952            | 1988-2020       | 115              | 0.9%              |

## C-3.1.1.3 Industry-Average Baselines

Table 234 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| 1 abic 234. Select | Table 254. Sciected industry distribution of A for LOLS W. |          |          |       |              |          |  |  |  |
|--------------------|------------------------------------------------------------|----------|----------|-------|--------------|----------|--|--|--|
| Analysis Type /    | 5%                                                         | Mean     | 95%      |       | Distribution |          |  |  |  |
| Source             |                                                            |          |          | Туре  | α            | β        |  |  |  |
| JNID/IL            | 5.96E-05                                                   | 5.08E-04 | 1.32E-03 | Gamma | 1.50         | 2.95E+03 |  |  |  |

Table 234. Selected industry distribution of  $\lambda$  for LOESW.

## C-3.1.2 Partial Loss of Standby (Emergency) Service Water (PLOSWS)

#### C-3.1.2.1 Initiating Event Description

From NUREG/CR-5750, the partial loss of service water system (PLOSWS) initiating event is a loss of one train of a multiple train system or partial loss of a single train system that impairs the ability of the system to perform its function. Examples include pump cavitation, strainer fouling, and piping rupture.

This category does not include loss of a redundant component in a SWS as long as the remaining, similar components provide the required level of performance. For example, a loss of a single SWS pump is not classified as a PLOSWS as long as the remaining operating or standby pumps can provide the required level of performance. A loss of service water to a single component in another system because of a blockage or incorrect line-up that does not affect the cooling to other components serviced by the train is not included under this category, but is instead classified as a failure of the system that the single component serves.

For this report, the definition was specialized to include only emergency service water (ESW) systems; therefore, the initiating event is Partial Loss of Emergency Service Water (PLOESW).

#### C-3.1.2.2 Data Collection and Review

Data for the PLOESW baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. These results also include the individual plant results for the same period. Table 235 summarizes the data obtained from RADS and used in the PLOESW analysis.

| Data After Review |                  | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|-------------------|------------------|------------------------|------------------|-------------------|
| Events            | Reactor Critical |                        |                  | with Events       |
|                   | Years (rcry)     |                        |                  |                   |
| 4                 | 2,952            | 1988-2020              | 115              | 3.5%              |

Table 235. PLOESW frequency data for baseline period.

#### C-3.1.2.3 Industry-Average Baselines

Table 236 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| JNID/IL                | 5.64E-04 | 1.52E-03 | 2.87E-03 | Gamma        | 4.50 | 2.95E+03 |

## C-3.1.3 Loss of Component Cooling Water (LOCCW)

## C-3.1.3.1 Initiating Event Description

From NUREG/CR-5750, the Loss of Component Cooling Water (LOCCW) initiating event is a complete loss of the CCW system. CCW is a closed-cycle cooling water system that removes heat from safety-related equipment and discharges the heat through a heat exchanger to an open-cycle service water system.

## C-3.1.3.2 Data Collection and Review

Data for LOCCW baselines, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. These results also include the individual plant results for the same period. Table 237 summarizes the data obtained from RADS and used in the LOCCW analysis.

| Data After Review |                  | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|-------------------|------------------|------------------------|------------------|-------------------|
| Events            | Reactor Critical |                        |                  | with Events       |
|                   | Years (rcry)     |                        |                  |                   |
| 1                 | 2,952            | 1988-2020              | 115              | 0.9%              |

Table 237. LOCCW frequency data

### C-3.1.3.3 Industry-Average Baselines

Table 238 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Analysis Type | 5%       | Mean     | 95%      |       | Distributi | on       |
|---------------|----------|----------|----------|-------|------------|----------|
| / Source      |          |          |          | Туре  | α          | β        |
| JNID/IL       | 5.96E-05 | 5.08E-04 | 1.32E-03 | Gamma | 1.50       | 2.95E+03 |

## C-3.1.4 Partial Loss of Component Cooling Water System (PLOCCW)

### C-3.1.4.1 Initiating Event Description

From NUREG/CR-5750, the partial loss of component cooling water system (PLOCCW) initiating event is a loss of one train of a multiple train system or partial loss of a single train system that impairs the ability of the system to perform its function. Examples include pump cavitation, filter fouling, and piping rupture. The CCW is a closed-cycle cooling water system that removes heat from safety-related equipment and discharges the heat through a heat exchanger to an open-cycle service water system.

These categories do not include a loss of a redundant component in a CCW as long as the remaining, similar components provide the required level of performance. For example, a loss of a single CCW pump is not classified as a partial loss of a CCW as long as the remaining operating or standby pumps can provide the required level of performance. A loss of CCW to a single component in another system because of a blockage or incorrect line-up that does not affect the cooling to other components serviced by the train is not included under this category, but is instead classified as a failure of the system that the single component serves.

#### C-3.1.4.2 Data Collection and Review

Data for the PLOCCW baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. These results also include the individual plant results for the same period. Table 239 summarizes the data obtained from RADS and used in the PLOCCW analysis.

| Data A | Data After Review |           | Number of Plants | Percent of Plants |  |
|--------|-------------------|-----------|------------------|-------------------|--|
| Events | Reactor Critical  |           |                  | with Events       |  |
|        | Years (rcry)      |           |                  |                   |  |
| 4      | 2,952             | 1988-2020 | 115              | 3.5%              |  |

Table 239. PLOCCW frequency data for baseline period.

### C-3.1.4.3 Industry-Average Baselines

Table 240 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

|                        | Analysis Type / Source     5%     Mean     95%     Distribution |          |          |       |           |          |  |  |  |  |
|------------------------|-----------------------------------------------------------------|----------|----------|-------|-----------|----------|--|--|--|--|
| Analysis Type / Source | 570                                                             | Ivicali  | 9570     | T     | Distribut | 0        |  |  |  |  |
|                        |                                                                 |          |          | Туре  | α         | β        |  |  |  |  |
| JNID/IL                | 5.64E-04                                                        | 1.52E-03 | 2.87E-03 | Gamma | 4.50      | 2.95E+03 |  |  |  |  |

Table 240. Selected industry distribution of  $\lambda$  for PLOCCW

# C-3.2 LOSS OF INSTRUMENT CONTROL AIR

## C-3.2.1 Loss of Instrument Air at Boiling Water Reactors (LOIA(BWR))

### C-3.2.1.1 Initiating Event Description

From NUREG/CR-5750, the loss of instrument air at Boiling Water Reactors (LOIA [BWR]) initiating event is a total or partial loss of an instrument or control air system that leads to a reactor trip or occurs shortly after the reactor trip. Examples include ruptured air headers, damaged air compressors with insufficient backup capability, losses of power to air compressors, line fitting failures, improper system line-ups, and undesired operations of pneumatic devices in other systems caused by low air header pressure.

### C-3.2.1.2 Data Collection and Review

Data for the LOIA (BWR) baseline, 1991–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. These results also include the individual plant results for the same period. Table 241 summarizes the data obtained from RADS and used in the LOIA (BWR) analysis.

| Table 241. LOIA | (BWR) free | quency data for | baseline period. |
|-----------------|------------|-----------------|------------------|
|-----------------|------------|-----------------|------------------|

| Data After Review |                  | <b>Baseline</b> Period | Number of Plants | Percent of Plants |
|-------------------|------------------|------------------------|------------------|-------------------|
| Events            | Reactor Critical |                        |                  | with Events       |
|                   | Years (rcry)     |                        |                  |                   |
| 6                 | 917              | 1991-2020              | 37               | 13.5%             |

### C-3.2.1.3 Industry-Average Baselines

Table 242 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|------------------------|----------|----------|----------|--------------|------|----------|
|                        |          |          |          | Туре         | α    | β        |
| EB/PL/KS               | 1.02E-04 | 6.55E-03 | 2.25E-02 | Gamma        | 0.68 | 1.04E+02 |

## C-3.2.2 Loss of Instrument Air at Pressurized Water Reactors (LOIA(PWR))

## C-3.2.2.1 Initiating Event Description

From NUREG/CR-5750, the loss of instrument air at PWRs (LOIA [PWR]) initiating event is a total or partial loss of an instrument or control air system that leads to a reactor trip or occurs shortly after the reactor trip. Examples include ruptured air headers, damaged air compressors with insufficient backup capability, losses of power to air compressors, line fitting failures, improper system line-ups, and undesired operations of pneumatic devices in other systems caused by low air header pressure.

### C-3.2.2.2 Data Collection and Review

Data for the LOIA (PWR) baseline, 1997–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. These results also include the individual plant results for the same period. Table 243 summarizes the data obtained from RADS and used in the LOIA (PWR) analysis.

| 1 abie 243.       | LOIA (FWK) nequency ua | ua foi basenne perioù. |                  |                   |  |
|-------------------|------------------------|------------------------|------------------|-------------------|--|
| Data After Review |                        | <b>Baseline Period</b> | Number of Plants | Percent of Plants |  |
| Ever              | ts Reactor Critical    |                        |                  | with Events       |  |
|                   | Years (rcry)           |                        |                  |                   |  |
| 10                | 1,453                  | 1997-2020              | 71               | 11.3%             |  |
|                   | •                      |                        |                  |                   |  |

## Table 243. LOIA (PWR) frequency data for baseline period.

## C-3.2.2.3 Industry-Average Baselines

Table 244 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| <b>T</b> 11 011 | <b>A</b> 1 <b>1</b>                     |          | 1            | <b>C A</b>   | C T   | OTA        |        |
|-----------------|-----------------------------------------|----------|--------------|--------------|-------|------------|--------|
| Table 244.      | Selected                                | industry | distribution | of $\lambda$ | tor I | <b>DIA</b> | (PWR). |
| 10010           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | mannen   |              | · · · ·      |       |            | (      |

| Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |       |          |
|------------------------|----------|----------|----------|--------------|-------|----------|
|                        |          |          |          | Туре         | α     | β        |
| JNID/IL                | 4.00E-03 | 7.23E-03 | 1.13E-02 | Gamma        | 10.50 | 1.45E+03 |

# C-4. LOSS OF OFFSITE POWER

# C-4.1 Loss of Offsite Power, Power Operations (LOOP.PO)

### C-4.1.1 Initiating Event Description

From NUREG/CR-5750, the loss of offsite power, power operations (LOOP.PO) initiating event is a simultaneous loss of electrical power to all safety-related buses that causes emergency power generators to start and supply power to the safety-related buses. The offsite power boundary extends from the offsite electrical power grid to the output breaker (inclusive) of the step-down transformer that feeds the first safety-related bus with an emergency power generator. The plant switchyard and service-type transformers are included within the offsite power boundary. This category includes the momentary or prolonged degradation of grid voltage that causes all emergency power generators to start (if operable) and load onto their associated safety-related buses (if available).

This category does not include a LOOP event that occurs while the plant is shutdown. In addition, it does not include any momentary undervoltage event that results in the automatic start of all emergency power generators, but in which the generators do not tie on to their respective buses due to the short duration of the undervoltage.

### C-4.1.2 Data Collection and Review

Data for the LOOP.PO baseline, 2006–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. The data also include the results for the four LOOP categories during the same period: grid-related (GR), plant-centered (PC), switchyard-centered (SC), and weather-related (WR) LOOPs. Table 245 summarizes the data obtained from RADS and used in the LOOP.PO analysis.

| LOOP Category | Data A | Data After Review                   |           | Counts Number | Percent of            |
|---------------|--------|-------------------------------------|-----------|---------------|-----------------------|
|               | Events | Reactor<br>Critical Years<br>(rcry) | Period    | of Plants     | Plants with<br>Events |
| PO.LOOP       | 35     | 1,389                               | 2006-2020 | 105           | 25.7%                 |
| PO.LOOP-GR    | 7      | 1,389                               | 2006-2020 | 105           | 5.7%                  |
| PO.LOOP-PC    | 6      | 1,389                               | 2006-2020 | 105           | 5.7%                  |
| PO.LOOP-SC    | 12     | 1,389                               | 2006-2020 | 105           | 11.4%                 |
| PO.LOOP-WR    | 10     | 1,389                               | 2006-2020 | 105           | 8.6%                  |

Table 245. LOOP frequency data for baseline period.

### C-4.1.3 Industry-Average Baselines

Table 246 lists the industry-average frequency distributions for the four LOOP categories and total LOOP. These industry-average frequencies do not account for any recovery.

| Event      | Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |       | on       |
|------------|------------------------|----------|----------|----------|--------------|-------|----------|
|            |                        |          |          |          | Type         | α     | β        |
| PO.LOOP    | EB/PL/KS               | 2.39E-03 | 2.52E-02 | 6.83E-02 | Gamma        | 1.33  | 5.28E+01 |
| PO.LOOP-GR | JNID/IL                | 2.61E-03 | 5.40E-03 | 8.99E-03 | Gamma        | 7.50  | 1.39E+03 |
| PO.LOOP-PC | JNID/IL                | 2.12E-03 | 4.68E-03 | 8.04E-03 | Gamma        | 6.50  | 1.39E+03 |
| PO.LOOP-SC | JNID/IL                | 5.26E-03 | 9.00E-03 | 1.35E-02 | Gamma        | 12.50 | 1.39E+03 |
| PO.LOOP-WR | EB/PL/KS               | 1.34E-04 | 7.21E-03 | 2.44E-02 | Gamma        | 0.71  | 9.88E+01 |

Table 246. Selected industry distributions of  $\lambda$  for LOOP.

Note: EB/PL/KS is an empirical Bayes analysis at the plant level with the Kass-Steffey adjustment. JNID/IL is a Jeffrey's noninformative distribution at the industry level. The percentiles and the mean of the distribution have units of events/rcry. The units for  $\beta$  are rcry.

# C-4.2 Loss of Offsite Power, Shutdown Operations (LOOP.SD)

#### C-4.2.1 Initiating Event Description

From NUREG/CR-5750, the loss of offsite power, shutdown operations (LOOP.SD) initiating event is a simultaneous loss of electrical power to all safety-related buses that causes emergency power generators to start and supply power to the safety-related buses. The offsite power boundary extends from the offsite electrical power grid to the output breaker (inclusive) of the step-down transformer that feeds the first safety-related bus with an emergency power generator. The plant switchyard and service-type transformers are included within the offsite power boundary. This category includes the momentary or prolonged degradation of grid voltage that causes all emergency power generators to start (if operable) and load onto their associated safety-related buses (if available).

This category does not include a LOOP event that occurs while the plant is at power. In addition, it does not include any momentary under-voltage event that results in the automatic start of all emergency power generators, but in which the generators do not tie on to their respective buses due to the short duration of the under-voltage.

#### C-4.2.2 Data Collection and Review

Data for the LOOP.SD baseline, 1997–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor shutdown years for the U.S. commercial NPPs. The data also include the results for the four LOOP categories during the same period: grid-related (GR), plant-centered (PC), switchyard-centered (SC), and weather-related (WR) LOOPs. Table 247 summarizes the data obtained from RADS and used in the LOOP.SD analysis.

| LOOP Category | Data A | Data After Review |           | Counts Number | Percent of  |
|---------------|--------|-------------------|-----------|---------------|-------------|
|               | Events | Reactor           | Period    | of Plants     | Plants with |
|               |        | Shutdown Years    |           |               | Events      |
| SD.LOOP       | 17     | 127               | 2006-2020 | 105           | 13.3%       |
| SD.LOOP-GR    | 2      | 127               | 2006-2020 | 105           | 1.9%        |
| SD.LOOP-PC    | 3      | 127               | 2006-2020 | 105           | 1.9%        |
| SD.LOOP-SC    | 8      | 127               | 2006-2020 | 105           | 6.7%        |
| SD.LOOP-WR    | 4      | 127               | 2006-2020 | 105           | 3.8%        |

Table 247. LOOP.SD frequency data for baseline period.

#### C-4.2.3 Industry-Average Baselines

Table 248 lists the industry-average frequency distributions for the four LOOP.SD categories and total LOOP.SD. These industry-average frequencies do not account for any recovery.

| Event      | Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |       |          |
|------------|------------------------|----------|----------|----------|--------------|-------|----------|
|            |                        |          |          |          | Туре         | α     | β        |
| SD.LOOP    | JNID/IL                | 8.84E-02 | 1.38E-01 | 1.96E-01 | Gamma        | 17.50 | 1.27E+02 |
| SD.LOOP-GR | JNID/IL                | 4.51E-03 | 1.97E-02 | 4.36E-02 | Gamma        | 2.50  | 1.27E+02 |
| SD.LOOP-PC | JNID/IL                | 8.53E-03 | 2.75E-02 | 5.54E-02 | Gamma        | 3.50  | 1.27E+02 |
| SD.LOOP-SC | JNID/IL                | 3.41E-02 | 6.68E-02 | 1.09E-01 | Gamma        | 8.50  | 1.27E+02 |
| SD.LOOP-WR | JNID/IL                | 1.31E-02 | 3.54E-02 | 6.66E-02 | Gamma        | 4.50  | 1.27E+02 |

Table 248. Selected industry distributions of  $\lambda$  for LOOP.SD.

Note: EB/PL/KS is an empirical Bayes analysis at the plant level with the Kass-Steffey adjustment. JNID/IL is a Jeffrey's noninformative distribution at the industry level. The percentiles and the mean of the distribution have units of events/rcry. The units for  $\beta$  are rcry.

# C-5. ELECTRICAL POWER

# C-5.1 Loss of Safety-Related AC Bus

## C-5.1.1 Loss of Vital AC Bus (LOAC)

#### C-5.1.1.1 Initiating Event Description

From NUREG/CR-5750, the Loss of Vital AC Bus (LOAC) initiating event is any sustained deenergization of a safety-related bus due to the inability to connect to any of the normal or alternative electrical power supplies. It includes loss of vital medium voltage AC bus (LOAC 4160V) and loss of vital low voltage AC bus (LOAC LOWV). The bus must be damaged or its power source unavailable for reasons beyond an open, remotely-operated feeder-breaker from a live power source. Examples include supply cable grounds, failed insulators, damaged disconnects, transformer deluge actuations, and improper uses of grounding devices.

#### C-5.1.1.2 Data Collection and Review

Data for the LOAC baseline, 1992–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Table 249 summarizes the baseline data obtained from RADS and used in the LOAC analysis.

The LOAC results shown here in Table 249 and Table 250 include a calculated value to adjust the LOAC frequency to use in PRA models where the LOAC initiator can be caused by more than a single AC bus. The calculated value (LOAC2) consists of dividing the mean by two and recalculating the uncertainty using an alpha parameter of 0.3.

| IE            | Data A | After Review            | Baseline  | Number of | Percent of  |
|---------------|--------|-------------------------|-----------|-----------|-------------|
|               | Events | <b>Reactor Critical</b> | Period    | Plants    | Plants with |
|               |        | Years (rcry)            |           |           | Events      |
| LOAC          | 16     | 2,635                   | 1992-2020 | 113       | 13.3%       |
| LOAC 4160V FI | 11     | 2,635                   | 1992-2020 | 113       | 8.8%        |
| LOAC LOWV FI  | 5      | 2,635                   | 1992-2020 | 113       | 4.4%        |

Table 249. LOAC frequency data for baseline period.

#### C-5.1.1.3 Industry-Average Baselines

Table 250 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| IE         | Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |       |          |
|------------|------------------------|----------|----------|----------|--------------|-------|----------|
|            |                        | 0,0      | 1,100    | 2070     | Туре         | α     | β        |
| LOAC       | JNID/IL                | 3.95E-03 | 6.26E-03 | 8.98E-03 | Gamma        | 16.50 | 2.64E+03 |
| LOAC 4160V | EB/PL/KS               | 3.34E-04 | 4.16E-03 | 1.16E-02 | Gamma        | 1.22  | 2.93E+02 |
| FI         |                        |          |          |          |              |       |          |
| LOAC LOWV  | JNID/IL                | 8.66E-04 | 2.09E-03 | 3.73E-03 | Gamma        | 5.50  | 2.64E+03 |
| FI         |                        |          |          |          |              |       |          |
| LOACB2     | Adjusted               | 3.15E-07 | 2.94E-03 | 1.34E-02 | Gamma        | 0.30  | 1.02E+02 |

Table 250. Selected industry distribution of  $\lambda$  for LOAC.

## C-5.1.2 Loss of Vital DC Bus (LODC)

## C-5.1.2.1 Initiating Event Description

From NUREG/CR-5750, the Loss of Vital DC Bus (LODC) initiating event is any sustained deenergization of a safety-related bus due to the inability to connect to any of the normal or alternative electrical power supplies. The bus must be damaged or have its power source unavailable for reasons beyond an open, remotely-operated feeder-breaker from a live power source. Examples include supply cable grounds, failed insulators, damaged disconnects, transformer deluge actuations, and improper uses of grounding devices.

## C-5.1.2.2 Data Collection and Review

Data for the LODC baseline, 1988–2020, were obtained from the IEDB, as accessed using the RADS database. The data include total number of events and total reactor critical years (rcrys) for the U.S. commercial NPPs. Table 251 summarizes the data obtained from RADS and used in the LODC analysis.

The LODC results shown here in Table 251 and Table 252 include a calculated value to adjust the LODC frequency used in PRA models where the LODC initiator can be caused by more than a single DC bus. The calculated value (LODC2) consists of dividing the mean by two and recalculating the uncertainty using an alpha parameter of 0.3.

| IE   | Data After Review |                                  | Baseline  | Number of | Percent of            |
|------|-------------------|----------------------------------|-----------|-----------|-----------------------|
|      | Events            | Reactor Critical Years<br>(rcry) | Period    | Plants    | Plants with<br>Events |
| LODC | 2                 | 2,952                            | 1988-2020 | 115       | 1.7%                  |

### C-5.1.2.3 Industry-Average Baselines

Table 252 lists the industry-average frequency distribution. This industry-average frequency does not account for any recovery.

| IE     | Analysis Type / Source | 5%       | Mean     | 95%      | Distribution |      |          |
|--------|------------------------|----------|----------|----------|--------------|------|----------|
|        |                        |          |          |          | Туре         | α    | β        |
| LODC   | JNID/IL                | 1.94E-04 | 8.47E-04 | 1.88E-03 | Gamma        | 2.50 | 2.95E+03 |
| LODCB2 | Adjusted               | 4.53E-08 | 4.24E-04 | 1.94E-03 | Gamma        | 0.30 | 7.08E+02 |

Table 252. Selected industry distribution of  $\lambda$  for LODC.

# C-6. REFERENCES

- [C-1] S.A. Eide et al., Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants, U.S. Nuclear Regulatory Commission, NUREG/CR-6928, January 2007.
- [C-2] N. Johnson and Z. Ma, Initiating Event Rates at U.S. Nuclear Power Plants: 1988–2020, Idaho National Laboratory, INL/EXT-20-59192, June 2020.
- [C-3] U.S. Nuclear Regulatory Commission, "Reactor Operational Experience Results and Databases, Initiating Events," https://nrcoe.inl.gov/InitEvent/.
- [C-4] D.M. Rasmuson, T.E. Wierman, and K.J. Kvarfordt, "An Overview of the Reliability and Availability Data System (RADS)," International Topical Meeting on Probabilistic Safety Analysis PSA'05, American Nuclear Society, Inc., 2005.
- [C-5] J.P. Poloski et al., Rates of Initiating Events at U.S. Nuclear Power Plants: 1987–1995, U.S. Nuclear Regulatory Commission, NUREG/CR-5750, February 1999.
- [C-6] S.A. Eide et al., Reevaluation of Station Blackout Risk at Nuclear Power Plants, U.S. Nuclear Regulatory Commission, NUREG/CR-6890, December 2005.
- [C-7] R. Tregoning, L. Abramson, and P. Scott, Estimating Loss-of-Coolant Accident (LOCA) Frequencies through the Elicitation Process, U.S. Nuclear Regulatory Commission, NUREG-1829, April 2008.
- [C-8] N. Johnson, Z. Ma, Initiating Event Rates at U.S. Nuclear Power Plants: 1988–2020, U.S. Idaho National Laboratory, INL/EXT-20-59192, June 2020.
- [C-9] S.A. Eide et al., "Estimating Loss-of-Coolant Accident Frequencies for the Standardized Plant Analysis Risk Models," ANS PSA Topical Meeting on Challenges During the Nuclear Renaissance, American Nuclear Society, Inc., September 2008.
- [C-10] ACRS, The Integrity of Reactor Vessels for Light-Water Power Reactors, U.S. Atomic Energy Commission Advisory Committee on Reactor Safeguards, WASH-1285, 1974.