

Analysis of Loss-of-Offsite-Power Events 2022 Update

July 2023

Nancy Johnson

Instrument Controls & Data Science, Idaho National Laboratory

Zhegang Ma

Regulatory Support, Idaho National Laboratory

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Analysis of Loss-of-Offsite-Power Events 2022 Update

Nancy Johnson
Instrument Controls & Data Science, Idaho National Laboratory

Zhegang Ma Regulatory Support, Idaho National Laboratory

July 2023

Idaho National Laboratory Regulatory Support Department Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
Division of Risk Assessment
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
NRC Agreement Number 31310019N0006
Task Order Number 31310019F0022

ABSTRACT

Loss-of-offsite power (LOOP) can have a negative impact on a nuclear power plant's ability to achieve and maintain safe shutdown conditions. LOOP frequencies and times required for subsequent restoration of offsite power are important inputs to plant probabilistic risk assessments. This report presents a statistical and engineering analysis of LOOP frequencies and durations at U.S. commercial nuclear power plants. The data used in this study were based on the operating experience during calendar years 1987–2022, with the most recent 15-year data (i.e., from 2008–2022) being used in the LOOP frequency estimates and engineering analysis, the most recent 10-year data (i.e., from 2013–2022) being used in the LOOP frequency trending analysis, and the 1997–2022 data being used in the LOOP duration (i.e., recovery time) analysis. LOOP events during critical operation that did not result in a reactor trip are not included. Frequencies and durations were determined for four LOOP event categories: plant-centered, switchyard-centered, grid-related, and weather-related. These categories (and the All-LOOPs group which contains all LOOP categories) could be further grouped by whether a LOOP event occurred during critical operation, during shutdown operation, or during all operations.

The following decreasing trends in the LOOP occurrence rates were identified for the most recent 10-year period (2013–2022): All-LOOPs during critical operation, switchyard-centered LOOPs during critical operation, grid-related LOOPs during critical operation, and weather-related LOOPs during critical operation.

Adverse trends in LOOP durations continue for switchyard-centered LOOPs during all operations, All-LOOPs during all operations, and All-LOOPs during shutdown operation for the 1997–2022 period.

Statistical tests show the LOOP counts for the period of 2008–2022 are not uniformly distributed across the 12 months, and variation among the months exists for All–LOOPs during all operations and All–LOOPs during critical operation.

The engineering analysis of LOOP data showed that, for the period of 2008–2022, the equipment failure events were mostly caused by failures of relays, circuits, and equipment in the "Other" subgroup; human errors have been less frequent and occurred primarily in maintenance; and the leading natural disasters causing LOOP events from weather were tornadoes and lightning.

There were no LOOP events in 2022 (2010 is another year with no LOOP events). Switchyard-related events are the most common event for all LOOPs accounting for 37% of LOOPs for the last 15 years (2008–2022), although decreased from 48% of LOOPs for the previous 21 years (1987–2007). Weather-related events are the second most common event accounting for 30% of LOOPs for the last 15 years (2008–2022), increased from 16% of LOOPs for the previous 21 years (1987–2007).

Page intentionally left blank.

EXECUTIVE SUMMARY

Loss-of-offsite power (LOOP) can have a negative impact on a plant's ability to achieve and maintain safe shutdown conditions. Risk analyses have shown LOOP can represent most of the internal event risk at some plants.

The objectives of this study are (1) to summarize the frequency, duration, and other aspects of LOOP events at commercial nuclear plants in the United States through calendar year 2022 and (2) to provide operational experience insights and trend information. Since this study includes the most recent annual data, it provides a basis for input into Standardized Plant Analysis Risk (SPAR) and industry probabilistic risk assessments (PRAs). The parameters in the SPAR models employed by the staff in regulatory decision making, such as those related to LOOP, are updated periodically, but not annually, so although they remain current, they are typically not the same as those contained in these annual reports. A link to the current parameter values employed in the SPAR models is located here: https://nrcoe.inl.gov/AvgPerf/.

As in previous studies, the LOOP data were studied for four categories: plant-centered (PC), switchyard-centered (SC), grid-related (GR), and weather-related (WR). These categories (and the All-LOOPs group which contains all LOOP categories) could be further grouped by whether a LOOP event occurred during critical operation, during shutdown operation, or during all operations.

There were no LOOP events in 2022 (2010 is another year with no LOOP events).

The data used in this study included operating experience during calendar years 1987–2022, with the most recent 15-year data (i.e., from 2008–2022) being used in the LOOP frequency estimates and engineering analysis, the most recent 10-year data (i.e., from 2013–2022) being used in the LOOP frequency trending analysis, and the 1997–2022 data being used in the LOOP duration (i.e., recovery time) analysis.

Occurrence Rates. Industry-average LOOP frequencies were determined for the calendar years 2008-2022. To characterize the variation in LOOP frequencies in each category for critical operation and shutdown operation, statistical tests were performed for each of the categories to see if there were significant differences across plant units. For the data that are not homogeneous (i.e., there are significant differences across plants among the various data groupings), Empirical Bayes (EB) gamma distributions were sought to describe any identified variation. The results show that the weather-related LOOP for critical operation data, the overall LOOP for critical operation data, and the overall LOOP for shutdown operation data can each be modeled using EB distributions with variation between plants. For the remaining data groupings, the data appear homogeneous. In those cases, the Jeffreys noninformative prior was updated with industry-level data to obtain a posterior distribution. The results are presented in Table ES-1 and could be used in risk assessments as prior distributions to be updated with plant-specific data

Table ES-1. Gamma distributions describing variation in LOOP frequencies across the U.S. NPP industry (2008–2022).

Mode	LOOP Category	Shape (α)	Scale (β)	5%	Median	95%	Gamma Mean	Notes
	LOOP-PC	6.50	1371.54	2.15E-03	4.50E-03	8.15E-03	4.74E-03	(a)
	LOOP-SC	9.50	1371.54	3.69E-03	6.69E-03	1.10E-02	6.93E-03	(a)
Critical Operation	LOOP-GR	7.50	1371.54	2.65E-03	5.23E-03	9.11E-03	5.47E-03	(a)
	LOOP-WR	0.65	89.04	9.57E-05	4.06E-03	2.55E-02	7.30E-03	(b)
	All-LOOPs	1.08	46.22	1.44E-03	1.67E-02	6.81E-02	2.34E-02	(b)
Shutdown	LOOP-PC	2.50	123.46	4.64E-03	1.76E-02	4.48E-02	2.02E-02	(a)
Operation	LOOP-SC	8.50	123.46	3.51E-02	6.62E-02	1.12E-01	6.88E-02	(a)

Mode	LOOP Category	Shape (α)	Scale (β)	5%	Median	95%	Gamma Mean	Notes
	LOOP-GR	0.50	123.46	1.59E-05	1.84E-03	1.56E-02	4.05E-03	(a)
	LOOP-WR	4.50	123.46	1.35E-02	3.38E-02	6.85E-02	3.64E-02	(a)
	All-LOOPs	0.37	3.03	7.32E-05	4.03E-02	5.21E-01	1.22E-01	(b)

 $(a)\ Homogeneous.\ The\ data\ rule\ out\ the\ possibility\ of\ wide\ variations\ among\ plants.\ The\ Jeffreys\ noninformative\ prior\ is\ used.$

(b) EB method is used. There appears to be variability between plants.

An investigation of possible trends in the LOOP occurrence rates for the most recent 10 years (2013–2022) was completed. The following decreasing trends were identified:

- All-LOOPs during critical operation (p-value=0.002)
- LOOPs-SC during critical operation (p-value=0.02)
- LOOPs-GR during all operations (p-value = 0.005).

Recovery Times. To develop estimates of the probability of exceeding specified recovery time limits, the recovery times for each category were fit to lognormal distributions by matching moments for the underlying normal distributions. Unlike prior reports in this series, which used data since 1988, more recent data was used in this report. The most recent 15-year (i.e., 2008–2022) data did not fit a lognormal distribution so that the data from 1997 through 2022 was needed and it fit the lognormal distribution and was used in the analysis. The results show LOOPs-GR have the shortest recovery times with a mean value of 3.57 hours, while the LOOPs-WR have the longest recovery times with a mean value of more than 44 hours.

A trend analysis of potential LOOP recovery times at the site level identified the following increasing trends:

- LOOPs-SC during all operations (p-value = 0.016)
- All-LOOPs during all operations (p-value = 0.018)
- All-LOOPs during shutdown operation (p-value = 0.003).

These increasing trends indicate it is taking longer to recover from the associated LOOP categories. There is no trend in the recovery times for LOOPs-PC, LOOPs-GR, or LOOPs-WR.

Seasonal Effects. To study monthly patterns in the LOOP occurrences, the 2008–2022 data were grouped and evaluated by month to see if the counts could be uniformly distributed. Statistical tests show the counts are not uniformly distributed across the 12 months, and variations among the months exist for:

- All-LOOPs during all operations (p-value = 0.025)
- All-LOOPs during critical operation (p-value = 0.012).

Multi-Unit LOOPs. Data for LOOP events that affected multiple units at multi-unit sites were reviewed. There were six occasions during 2008–2022 when more than one unit at a site was affected by the same incident. The six occasions contributed 13 of the 46 unit-level events during 2008–2022. When multiple units at a site experience a LOOP on the same day, the unit-level LOOP events may not be independent. While the analyses in this report treat the unit-level events independently for the most part, we also present an investigation of different approaches to address multi-unit LOOP events.

Consequential LOOPs. NUREG/CR-6890 (Eide et al. 2005) provided an estimate of conditional probabilities of a consequential LOOP (CLOOP) given a reactor trip, 5.3E-3 for the period 1997–2004 and 3.0E-3 for the period 1986–1996. This study presents an update of the conditional probability using data from 2008–2022. The updated conditional probabilities of CLOOP given a reactor trip are found to be 1.83E-03, which represents a reduction of about 65% versus the value of 5.3E-3 from NUREG/CR-6890.

Engineering Analysis of LOOP Data. The engineering review of the LOOP data found the following insights for the period of 2008–2022:

- The equipment failure events were mostly caused by failures of relays, circuits, and equipment in the "Other" subgroup.
- Human errors have been much less frequent and occurred primarily in maintenance.
- The leading natural disasters causing LOOP events from weather were tornadoes, hurricanes, and lightning.
 - Note that depending on whether the hazard impact is localized or widespread and where the induced fault is, a natural hazard caused LOOP event could be coded into a different LOOP category (e.g., LOOP-PC, LOOP-SC, or LOOP-GR) other than LOOP-WR. This is more so for lightning than other nature hazards such as hurricane and tornado due to the typically localized impacts from lightning.
- LOOP-SC is the most common event for all LOOPs accounting for 37% of LOOPs for the last 15 years (2008–2022), albeit decreased from 48% of LOOPs for the previous 21 years (1987–2007).
- LOOP-WR is the second most common event accounting for 30% of LOOPs for the last 15 years (2008–2022), increased from 16% of LOOPs for the previous 21 years (1987–2007).

CONTENTS

ABS	STRAC	T		111
EXI	ECUTI	VE SUM	MARY	v
ACI	RONYI	MS		xii
GLO	OSSAR	Υ		xiii
1.	INTE	RODUCT	TION	1
	1.1	Change	es from Previous Years	2
2.	INDU	USTRY-	WIDE LOOP FREQUENCIES	4
	2.1	Freque	ntist Analysis of LOOP Frequencies and Trend	4
		2.1.1	LOOP Frequencies – Maximum Likelihood Estimate	4
		2.1.2	Plots of Annual Data and 10-year Trends	
	2.2	Bayesi	an Analysis of LOOP Frequencies	8
		2.2.1	LOOP Frequencies – Uncertainty Distribution	8
		2.2.2	Variations Over NERC Regions	
	2.3		ary of LOOP Event Count Data	
3.	LOO		TION ANALYSIS	
	3.1	Trends	in Recovery Times	18
	3.2	LOOP	Recovery Times	19
4.	SPEC	CIAL TO	PICS OF INTEREST	23
	4.1	Season	al Effects on LOOP Frequency	23
	4.2	Multi-U	Unit LOOP Events	24
	4.3	Consec	quential LOOPs	27
		4.3.1	Consequential LOOP Given a Reactor Trip	27
		4.3.2	Consequential LOOP Given a LOCA	29
5.	ENG	INEERI	NG ANALYSIS OF LOOP DATA	30
	5.1	Qualita	tive Insights of LOOP Events by Cause	30
6.	REF	ERENCE	S	32
App	endix A	A LOOP	Events Listing (1987–2022)	33
			FIGURES	
Figu	ıre 1. L	OOP clas	ssification	2
Figu	ıre 2. E	stimated	LOOP frequencies (all categories) and 10-year trend during critical of	peration6
Figu	ıre 3. E	stimated	LOOP-PC frequency and 10-year trend during critical operation	6
Ana	lysis ot	f	viii	2022 Update

Figure 4. Estimated LOOP-SC frequency and 10-year trend during critical operation	7
Figure 5. Estimated LOOP-GR frequency and 10-year trend during critical operation.	7
Figure 6. Estimated LOOP-WR frequency and 10-year trend during critical operation	8
Figure 7. New NERC regional entities.	10
Figure 8. Reactor operating years (1987–2022)	14
Figure 9. Critical and shutdown LOOPs (1987–2022).	14
Figure 10. LOOP event counts by category (1987–2022).	15
Figure 11. LOOPs-PC (1987–2022).	15
Figure 12. LOOPs-SC (1987–2022).	16
Figure 13. LOOPs-GR (1987–2022)	16
Figure 14. LOOPs-WR (1987–2022)	17
Figure 15. Statistically significant increasing trend for LOOP recovery times (all event types) from 1997–2022.	18
Figure 16. Probability of exceedance (non-recovery probability) vs. duration curves for all event types and operating modes (1997–2022)	22
Figure 17. Failed components causing LOOP events from equipment failures (2008–2022)	30
Figure 18. Activities causing LOOP events from human error (2008–2022).	31
Figure 19. Natural disasters causing LOOP events from weather (2008–2022)	31
TABLES	
Table 1. LOOP analyses and the associated data periods.	3
Table 2. LOOP events and maximum likelihood estimate of frequencies for 2008–2022	4
Table 3. Gamma distributions describing variation in LOOP frequencies across the U.S. NPP industry (2008–2022).	9
Table 4. Estimated LOOP-GR frequencies by NERC regional entities during critical operation (2008–2022)	
Table 5. Summary of all U.S. NPP LOOP event count data 1987–2022	12
Table 6. Log linear regression of LOOP recovery times for the post-deregulation period (1997–2022).	19
Table 7. Fitted lognormal recovery time distributions (1997–2022).	21
Table 8. LOOP event counts by month and LOOP category by operating mode (2008–2022)	23
Table 9. LOOP event total counts by month and by LOOP category or operating mode (2008–2022)	24
Table 10. Multi-unit LOOP events for 1987–2022.	25
Table 11. LOOP occurrences and unit-level LOOP events from 2008–2022	26

Table 12. Conditional probability of all units at a multi-unit site experiencing a LOOP given a LOOP at one of the units using data from 2008–2022.	27
Table 13. Consequential LOOP events from 1987–2022.	28
Table 14. Conditional probability of consequential LOOP given reactor trip.	28
Table 15. Adjusted industry-average critical operation LOOP frequencies after excluding consequential LOOP events (2008–2022).	29
Table A-1. LOOP events for 1987–2022, sorted by plant.	39
Table A-2. LOOP events showing restoration time uncertainty for 1987–2022.	49

Page intentionally left blank

ACRONYMS

AC alternating current

CLOOP consequential loss-of-offsite power

EB Empirical Bayes

EDG emergency diesel generator

GR grid-related

IE initiating event

INL Idaho National Laboratory

LER licensee event report

LOCA loss-of-coolant accident

LOOP loss-of-offsite power

LOOP-GR grid-related LOOP

LOOP-PC plant-centered LOOP

LOOP-SC switchyard-centered LOOP

LOOP-WR weather-related LOOP

MLE maximum likelihood estimator

NERC North American Electric Reliability Council

NPP nuclear power plant

NRC Nuclear Regulatory Commission

PC plant-centered

PLOOP partial loss-of-offsite power

PRA probabilistic risk assessment

rcry reactor critical year

rsy reactor shutdown year

SAPHIRE Systems Analysis Programs for Hands-on Integrated Reliability Evaluations

SBO station blackout

SC switchyard-centered

SERC Southeastern Electric Reliability Council

SPAR Standardized Plant Analysis Risk

WR weather-related

GLOSSARY^a

Loss-of-offsite power (LOOP) event—the simultaneous loss of electrical power to all unit safety buses (also referred to as emergency buses, Class 1E buses, and vital buses) requiring **all** emergency power generators to start and supply power to the safety buses. The non-essential buses may also be de-energized because of this situation.

Numerous definitions for LOOP exist (e.g., NUREG-2122 defines LOOP as "the loss of all AC power from the electrical grid to the plant safety buses"). The definition provided in NUREG/CR-6890 and this report clarified that a LOOP must require all emergency power generators to start and supply power to the safety buses. It should be noted that if all emergency power generators started but did not load due to another offsite source being able to automatically repower the buses, the event will not be classified as a LOOP. If the emergency power generators started but did not load due to the quick recovery of the lost offsite power source, then the event will be classified as a LOOP.

Partial LOOP (PLOOP) event—the loss of electrical power to at least one, but not all, unit safety buses that requires at least one emergency power generator to start and supply power to the safety bus(es).

Station blackout (SBO)—the complete loss of ac power to safety buses in a nuclear power plant (NPP) unit. Station blackout involves the LOOP concurrent with the failure of the onsite emergency ac power system. It does not require the loss of available ac power to safety buses fed by station batteries through inverters or successful high-pressure core spray operation or station blackout power supplies (e.g., non-safety related SBO diesel generators or alternate offsite SBO feeds). For example, a LOOP concurrent with the failure of the onsite emergency ac power system is an SBO, even if SBO diesel generators are functional.

Note the slight differences between the above SBO definition (based upon NUREG/CR-6890) and the definition in 10 CFR 50.2 and ASME/ANS RA-Sb-2013. For example, 10CFR 50.2 states that "Station blackout means the complete loss of alternating current (ac) electric power to the essential and non-essential switchgear buses in a nuclear power plant (i.e., loss of offsite electric power system concurrent with turbine trip and unavailability of the onsite emergency ac power system)." The SBO definition in NUREG/CR-6890 and the following annual LOOP analyses do not include operation or failure of the non-essential buses (also referred to as non-safety buses, non-1E buses) for several reasons. For instance, non-essential buses are usually not modeled in probabilistic risk assessment (PRA), they are not used as a criterion in the state-of—practice identifying/classifying LOOP and SBO events, and successful performance of non-essential buses is generally not considered sufficient in leading PRA sequences to the safe and stable state.

_

^a This Glossary section uses the same definitions as those in NUREG/CR-6890. Additional notes or revisions are in *Italic font* for clarification, as needed.

Terms Related to LOOP Categories

- Grid-related LOOP—a LOOP event in which the initial failure occurs in the interconnected transmission grid that is outside the direct control of plant personnel. Failures that involve transmission lines within the site switchyard are usually classified as switchyard-centered events if plant personnel can take actions to restore power when the fault is cleared. However, the event should be classified as grid related if the transmission lines fail from voltage or frequency instabilities, overload, or other causes that require restoration efforts or corrective action by the transmission operator.
- Plant-centered LOOP—a LOOP event in which the design and operational characteristics of the NPP unit itself play the major role in the LOOP cause and duration. Plant-centered failures typically involve hardware failures, design deficiencies, human errors, and localized weather-induced faults such as lightning. The line of demarcation between plant-centered and switchyard-centered events is the NPP main and station power transformers' high-voltage terminals.
- **Switchyard-centered LOOP**—a LOOP event in which the equipment (or human-induced failures of equipment) in the switchyard plays the major role in the loss-of-offsite power. Switchyard-centered failures typically involve hardware failures, design deficiencies, human errors, and localized weather-induced faults such as lightning. The line of demarcation between switchyard-related events and grid-related events *is the point where the transmission lines leave the switchyard*.
- **Weather-related LOOP**—a LOOP event caused by severe or extreme weather. There are two subcategories: *severe-weather-related LOOP and extreme-weather-related LOOP*.
- Severe-weather-related LOOP—a LOOP event caused by severe weather, in which the weather was widespread, not just centered on the site, and capable of major disruption. Severe weather is defined to be weather with forceful and broad (beyond local) effects. An example is storm damage to transmission lines instead of just debris blown into a transformer. This does not mean that the event had to result in widespread damage, just that the potential *existed*. Examples of severe weather include thunderstorms, snow, and ice storms. Lightning strikes, though forceful, are normally localized to one unit, and so are coded as plant-centered or switchyard-centered. LOOP events involving hurricanes, strong winds greater than 125 miles per hour, and tornadoes are included in a separate category—extreme-weather-related LOOPs. Severe-weather-related events are included in the weather-related category in this volume.
- **Extreme-weather-related LOOP**—a LOOP event caused by extreme weather. Examples of extreme weather are hurricanes, strong winds greater than 125 miles per hour, and tornadoes. Extreme-weather-related LOOP events are also distinguished from severe weather-related LOOP events by their potential to cause significant damage to the electrical transmission system and long offsite-power restoration times. Extreme-weather-related events are included in the weather-related events category in this volume. *Extreme weather events are more impactful than severe weather events*.

Terms Related to LOOP Classifications

- LOOP initiating event (LOOP-IE), or Functional LOOP-IE—a LOOP occurring while a plant is at power and involving a reactor trip. The LOOP can cause the reactor to trip, or both the LOOP event and the reactor trip can be part of the same transient. Note that this is the NUREG/CR-5750 (Poloski et al. 1999) definition of a functional-impact LOOP initiating event (as opposed to an initial plant fault LOOP initiating event). LOOP-IE events are further subdivided into LOOP-IE-I, LOOP-IE-C, and LOOP-IE-NC (see below), and all three types are included in the critical operation LOOP frequency calculation.
- Initial plant fault LOOP-IE (LOOP-IE-I)—a LOOP-IE in which the LOOP event causes the reactor to trip. LOOP-IE-I is a subset of LOOP-IE events. NUREG/CR-5750 (Poloski et al. 1999) uses the term "initial plant fault" to distinguish these events from other "functional impact" events (LOOP-IE-C and LOOP-IE-NC).
- Consequential LOOP-IE (LOOP-IE-C)—a LOOP-IE in which the LOOP is the direct or indirect result of a plant trip. For example, the event is consequential if the LOOP occurred during a switching transient (e.g., main generator tripping) after a unit trip from an unrelated cause. In this case, the LOOP would not have occurred if the unit remained operational. LOOP-IE-C is a subset of LOOP-IE events.
- **Nonconsequential LOOP-IE (LOOP-IE-NC)**—a LOOP-IE in which the LOOP occurs following, but is not related to, the reactor trip. LOOP-IE-NC is a subset of LOOP-IE events.
- LOOP no-trip event (LOOP-NT)—a LOOP occurring while a plant is at power but not involving a reactor trip. Depending upon plant design, the plant status at the time of the LOOP, and the specific characteristics of the LOOP event, some plants may remain at power given a LOOP. These LOOP events are not included in the analysis (neither in the LOOP frequency calculation nor in the LOOP event counts).
- **LOOP shutdown event (LOOP-SD)**—a LOOP occurring while a plant is shut down. *These LOOP events are included in the shutdown operation LOOP frequency calculation.*

Terms Related to Time Needed to Restore Offsite Power

- **Actual bus restoration time**—the duration, in minutes, from event initiation until offsite electrical power is restored to a safety bus. This is the actual time taken, *from the onset of the LOOP (time zero), until offsite power is restored* from the first available source to a safety bus.
- **Potential bus recovery time**—the duration, in minutes, from the event initiation until offsite electrical power could have been recovered to a safety bus. This estimated time is less than or equal to the actual bus restoration time. *The determination of potential bus recovery time is based on engineering judgement (see Subsection 6.7 of NUREG/CR 6890*).

Switchyard restoration time—the duration, in minutes, from event initiation until offsite electrical power is restored (or could have been restored, whichever time is shorter) to the switchyard. Items, such as, absence of further interruptions to the switchyard, adequacy of the frequency and voltage levels to the switchyard, and absence of transients that could be disruptive to plant electrical equipment, should be considered in determining the time.

Page intentionally left blank

Analysis of Loss-of-Offsite-Power Events 2022 Update

1. INTRODUCTION

U.S. commercial nuclear power plants (NPPs) rely on alternating current (ac) power supplied through the electric grid for both routine operation and accident recovery. While emergency generating equipment is always available onsite, a loss-of-offsite power (LOOP) can have a major negative impact on a plant's ability to achieve and maintain safe shutdown conditions. Risk analyses have shown LOOP events can contribute significantly to the internal risk at many plants. Therefore, LOOP events and the subsequent restoration of offsite power are important inputs to plant probabilistic risk assessments (PRAs). These inputs must reflect current industry performance so PRAs can accurately estimate the risk from LOOP-initiated scenarios.

The objectives of this study are (1) to summarize the frequency, duration, and other aspects of LOOP events at commercial nuclear plants in the United States through calendar year 2022 and (2) to provide operational experience insights and trend information. Since this study includes the most recent annual data, it provides a basis for input into Standardized Plant Analysis Risk (SPAR) and industry PRAs. The parameters in the SPAR models employed by the staff in regulatory decision making, such as those related to LOOP, are updated periodically, but not annually, so although they remain current, they are typically not the same as those contained in these annual reports. A link to the current parameter values employed in the SPAR models is located here: https://nrcoe.inl.gov/AvgPerf/.

NUREG/CR-6890, Reevaluation of Station Blackout Risk at Nuclear Power Plants: Analysis of Loss-of-Offsite-Power Events (Eide et al. 2005), preceded the annual update studies such as those contained in this document which continues the work by covering data through 2022. As in the previous studies, the events are based on four LOOP categories: plant-centered (PC), switchyard-centered (SC), grid-related (GR), and weather-related (WR). See the Glossary for definitions of these and other related terms. These categories (and the All-LOOPs group which contains all LOOP categories) could be further grouped by whether a LOOP event occurred during critical operation, during shutdown operation, or during all operations.

The data used in this study included operating experience during calendar years 1987–2022. LOOP occurrence data from 1987 to the current update year are summarized in Subsection 2.3. Appendix A-1 of Appendix A lists the licensee event reports (LERs) as well as other event characteristics (including occurrence date, operating mode, LOOP category, LOOP restoration time, and event cause) associated with the LOOP events for 1987–2022 supporting this study. The operating mode designation used in the LOOP database and in this report is different from the term that is used in nuclear plant operations for Modes 1, 2, 3, etc. The operating modes in this report include Power-Ops (or Critical Operation) and Shutdown Operation.

The most recent 15-year data (i.e., from 2008–2022 for this update) were used in general in this report. The starting period of the data for most analyses in this report is January 1, 2008. In previous reports in this series, January 1, 1997 was often used as the starting period of the data for most analyses as it was regarded as the start of the deregulation of the U.S. electrical industry. Furthermore, in the update reports prior to 2014, data from fiscal year 1988 (which includes some of calendar year 1987) were included for critical operation LOOPs-GR and for shutdown operation LOOPs other than SC. **However, as more time and data have accrued, the older data has been removed from analyses so that more recent data are used to represent current industry performance**. Consistent with that, the most recent 15-year period was also selected beginning with the 2020 LOOP update (Johnson and Ma 2021) as well as the 2020 PRA parameter update for component reliability, common-cause failure alpha factors, and

initiating event frequencies (Ma, Wierman, and Kvarfordt 2021) (values currently used in the SPAR models), as it provides sufficient operating experience for most analyses while excluding older data.

This report contains trending information as well as statistical distributions that describe variations in the data. Since the 2014 update, the frequency trends have been analyzed for the most recent 10 years. Consequently, the 2013–2022 period was used for the trending analysis in this update.

The other aspect of LOOP events that is a focal point of this report is their duration (or recovery time). Table A-2 of Appendix A lists the three durations and uncertainties associated with the durations for each LOOP event from 1987–2022. Unlike the use of data from 1988 in previous reports in this series, only the more recent data has been used in this report. However, the most recent 15-year (i.e., 2008–2022) data did not fit the lognormal distribution that is used for the duration analysis. Instead, the data from 1997 through 2022 better fit the distribution and were used in the analysis. The same 1997–2022 period data were used in the trend analysis of the recovery times as well.

NUREG/CR-6890 also classifies LOOP events into (1) LOOP-IE, which occurs during critical operation and involve a plant trip; (2) LOOP-NT, which occurs during critical operation, but the plant can continue operation without a plant trip; and (3) LOOP-SD, which occurs during shut down. The LOOP-IE events are further divided into LOOP-IE-I, in which a LOOP event causes the reactor trip; LOOP-IE-C, in which an unrelated reactor trip causes a LOOP to occur; and LOOP-IE-NC, in which a reactor trip and LOOP occur during the same transient but are unrelated. Partial LOOP (PLOOP) events occur when some, but not all, offsite power is lost to unit safety buses. See the Glossary for definitions and Figure 1 for the classification.

The data covered in the annual update analysis include LOOP initiating events (LOOP-IE) and LOOP shutdown events (LOOP-SD). LOOP no-trip events (LOOP-NT) and PLOOP events are not included in the analysis.

Since 2009, the annual LOOP updates have included a discussion of emergency diesel generator (EDG) repair times, however, since 2018, these analyses have been moved to the EDG component study reports (Ma 2019; Ma 2022) and can be accessed at: https://nrcoe.inl.gov/resultsdb/CompPerf/.

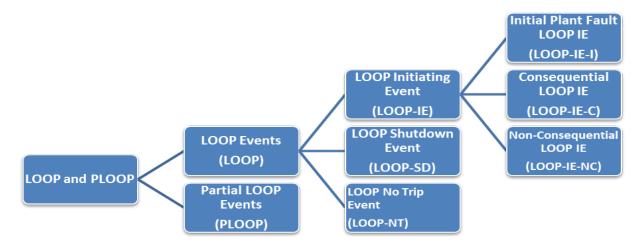


Figure 1. LOOP Classification.

1.1 Changes from Previous Years

- No new LOOP events this year.
- Same as in the 2020 and 2021 LOOP update reports (Johnson and Ma 2021, Johnson and Ma 2022), the most recent 15-year data were used for most analyses in this update report, although there are a

few analyses that used different data periods when necessary. Table 1 presents the data periods used in various LOOP analyses in this report.

Table 1. LOOP analyses and the associated data periods.

LOOP Analysis	Section Number	Table/Figure Number	Period	Note
LOOP Frequency - MLE	Section 2.1.1	Table 2	2008-2022	(a)
LOOP Frequency Trending	Section 2.1.2	Figure 2 to Figure 6	2013-2022	(b)
LOOP Frequency - Bayesian	Section 2.2	Table 3	2008-2022	(a)
LOOP Event Count Data Summary	Section 2.3	Table 5	1987-2022	(c)
LOOP Recovery Time Analysis	Section 3	Table 6 and Table 7	1997–2022	(d)
LOOP Seasonal Effects	Section 4.1	Table 8 and Table 9	2008-2022	(a)
Multi-Unit LOOP	Section 4.2	Table 10 to Table 12	2008-2022	(a)
Consequential LOOP	Section 4.3	Table 13 to Table 15	2008-2022	(a)
Engineering Analysis of LOOP Data	Section 5	Figure 17 to Figure 19	2008-2022	(a)

NOTE:

- (a) The most recent 15 years.
- (b) The most recent 10 years, which has been used in the trending analyses only for LOOP, initiating event, component performance, and system studies.
- (c) The full LOOP database coverage
- (d) The data from 2008–2022 did not have a lognormal distribution that typically is used in the LOOP recovery time analysis. Instead, the data from the longer period, 1997–2022, fit the model and were used. The year 1997 has been historically used as the starting year for various LOOP associated analyses.

2. INDUSTRY-WIDE LOOP FREQUENCIES

Industry-average LOOP frequencies were determined for the calendar years 2008–2022. The 2008–2022 date period for the data reflects the most recent 15-year view of industry-wide LOOP frequencies. The values include critical and shutdown operations in four event categories: LOOP-PC, LOOP-SC, LOOP-GR, and LOOP-WR. Subsection 2.1 provides a frequentist analysis of LOOP frequencies covering the period 2008–2022 and annual data and trending analysis for the most recent 10 years. Subsection 2.2 provides Bayesian analysis of LOOP frequencies, which are more often used in PRA applications, covering the period 2008–2022 and discusses variation in the frequencies between plants. It also provides an updated uncertainty distribution for critical operation LOOPs-GR for plants grouped by the new North American Electric Reliability Council (NERC) regional entities. Subsection 2.3 presents a summary of all LOOP data for 1987–2022 for reference.

2.1 Frequentist Analysis of LOOP Frequencies and Trend

2.1.1 LOOP Frequencies – Maximum Likelihood Estimate

Table 2 reports the observed event counts and reactor years with reactor years coming from the Nuclear Regulatory Commission (NRC)'s Reactor Operational Experience Results and Databases website Operating Time webpage, https://nrcoe.inl.gov/resultsdb/ReactorYears. The simplest statistic that comes from the counts and exposure time is the maximum likelihood estimate (MLE) of the occurrence rate. It is computed as event count divided by the corresponding exposure time. This estimate is the value that maximizes the probability of seeing the observed data, assuming a constant LOOP occurrence rate across the industry for each LOOP category/operating mode.

Mode	LOOP Category	Events	Reactor Critical or Shutdown Years	MLE (Events/Years)	Percent
	LOOP-PC	6	1371.54	4.37E-03	19%
	LOOP-SC	9	1371.54	6.56E-03	28%
Critical Operation ^a	LOOP-GR	7	1371.54	5.10E-03	22%
	LOOP-WR	10	1371.54	7.29E-03	31%
	All-LOOPs	32	1371.54	2.33E-02	100%
	LOOP-PC	2	123.46	1.62E-02	14%
	LOOP-SC	8	123.46	6.48E-02	57%
Shutdown Operation ^b	LOOP-GR	0	123.46	0.00E+00	0%
	LOOP-WR	4	123.46	3.24E-02	29%
	All-LOOPs	14	123.46	1.13E-01	100%

⁽a) The frequency units for critical operation are events per reactor critical year (/rcry)

For the critical operation during the last 15 years (2008–2022), LOOP-WR events contribute 31%, followed by LOOP-SC (28%), to the total critical operation LOOP frequency. For shutdown operation, LOOP-SC events contribute 57%, and LOOP-WR contributes 29% to the total shutdown operation LOOP frequency.

⁽b) The frequency units for shutdown operation are events per reactor shutdown year (/rsy).

2.1.2 Plots of Annual Data and 10-year Trends

The performance trends provided in this subsection are intended to be representative of current operating conditions. The amount of historical data to be included in the trend period requires judgment on what constitutes current trends, which is considered to be the most recent 10 years in the study. To provide perspective, the plots include data since 2008 to reflect the most recent 15 year's insight to industry-wide performance.

Figure 2–Figure 6 show the annual estimated overall and sub-category LOOP frequencies from 2008–2022 and the trend for the most recent 10 years (2013–2022) during critical operation, respectively. The 90% confidence intervals of the LOOP frequency (plotted vertically) are confidence intervals for the estimated rate associated with each individual year's data. The 90% confidence band of the trend for the most recent 10 years is a simultaneous band, intended to cover 90% of the possible trend lines that might underlie the data. Each regression is analyzed as a generalized linear model, with Poisson data in each year and a trend from year to year postulated for the logarithm of the occurrence rate.

The following trends were identified for the most recent 10 years (2013–2022):

- A highly statistically significant^b decreasing trend was identified for All-LOOPs during critical operation (p-value = 0.002) as seen in Figure 2
- A statistically significant decreasing trend was identified for LOOP-SC during critical operation (p-value = 0.02) as seen in Figure 4
- A highly statistically significant decreasing trend was identified for LOOP-GR during critical operation (p-value = 0.005) as seen in Figure 5.

There were no statistically significant trends identified for LOOP-PC and LOOP-WR during critical operation for the most recent 10 years (2013–2022).

2022 Update

July 2023

_

b Statistical significance is defined in terms of the "p-value." A p-value is a probability indicating whether to accept or reject the null hypothesis that there is no trend in the data. P-values of less than or equal to 0.05 indicate that we are 95% confident there is a trend in the data (reject the null hypothesis of no trend.) By convention, we use the "Michelin Guide" scale: p-value < 0.05 (statistically significant), p-value < 0.01 (highly statistically significant), and p-value < 0.001 (extremely statistically significant).

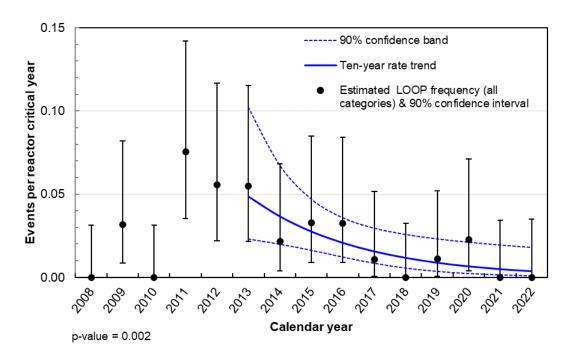


Figure 2. Estimated LOOP frequencies (all categories) and 10-year trend during critical operation.

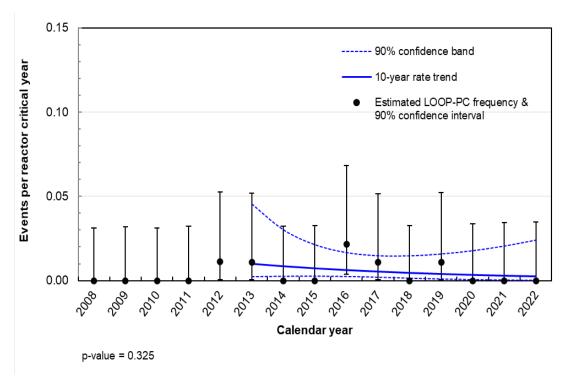


Figure 3. Estimated LOOP-PC frequency and 10-year trend during critical operation.

2022 Update

July 2023

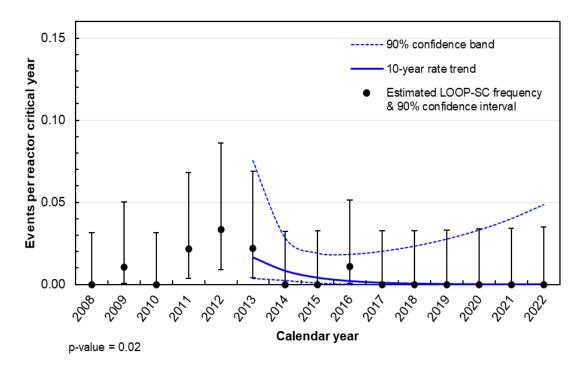


Figure 4. Estimated LOOP-SC frequency and 10-year trend during critical operation.

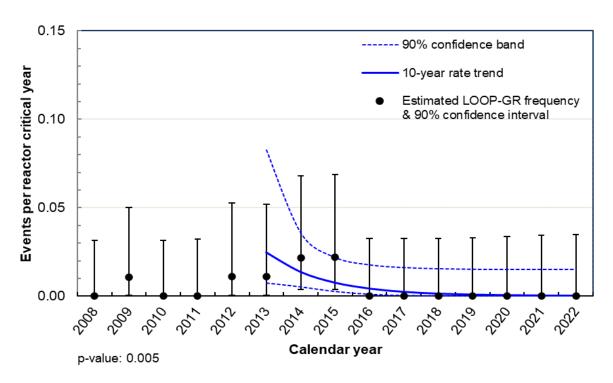


Figure 5. Estimated LOOP-GR frequency and 10-year trend during critical operation.

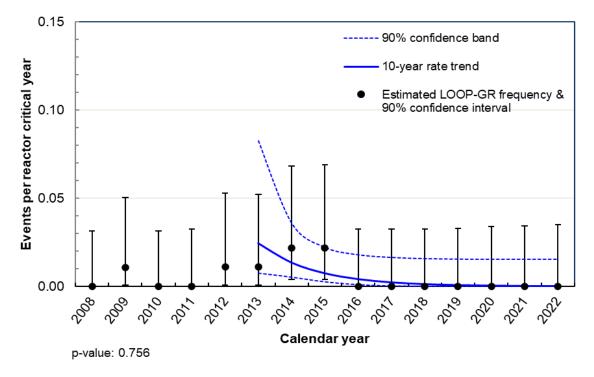


Figure 6. Estimated LOOP-WR frequency and 10-year trend during critical operation.

2.2 Bayesian Analysis of LOOP Frequencies

2.2.1 LOOP Frequencies – Uncertainty Distribution

When developing parameter estimates for use in PRA applications, the question arises as to whether all plants are comparable or if there are significant plant-to-plant variations in performance. Other factors might also account for differences in plant performance, such as electrical grid, power pool, plant-operating mode, and time (calendar years). In this subsection, Bayesian methods are used to derive distributions describing industry-level occurrence rates for use in PRAs. The methods account for uncertainties coming from the random nature of the data and from between-group variation. The methods start by searching for variability in the data after grouping (pooling) the data based on a particular factor. The chi-squared test is used to determine equality of LOOP frequency estimate groupings, then parameter estimates are updated using Empirical Bayes (EB) analyses (Atwood et al. 2003).

When the statistical tests detect variation, an EB distribution can be obtained representing that variation. EB distribution results are reported in Table 3. If the tests for variation indicate the data appear homogeneous for each grouping, a Jeffreys noninformative prior is used to construct the industry estimate. The Jeffreys noninformative prior results in a posterior distribution with the event count plus 0.5, divided by the exposure time, as the mean. For each distribution, the 5th, 50th, and 95th percentiles, the mean, and the distribution parameters were tabulated.

The LOOP data were split by whether plant is in critical operation or shutdown operation for all LOOP categories because of different plant-operating conditions and demands on the emergency power system associated with the two operating modes.

Table 3. Gamma distributions describing variation in LOOP frequencies across the U.S. NPP industry (2008–2022).

Mode	LOOP Category	Shape (α)	Scale (β)	5%	Median	95%	Gamma Mean	Notes
	LOOP-PC	6.50	1371.54	2.15E-03	4.50E-03	8.15E-03	4.74E-03	(a)
	LOOP-SC	9.50	1371.54	3.69E-03	6.69E-03	1.10E-02	6.93E-03	(a)
Critical Operation	LOOP-GR	7.50	1371.54	2.65E-03	5.23E-03	9.11E-03	5.47E-03	(a)
	LOOP-WR	0.65	89.04	9.57E-05	4.06E-03	2.55E-02	7.30E-03	(b)
	All-LOOPs	1.08	46.22	1.44E-03	1.67E-02	6.81E-02	2.34E-02	(b)
	LOOP-PC	2.50	123.46	4.64E-03	1.76E-02	4.48E-02	2.02E-02	(a)
	LOOP-SC	8.50	123.46	3.51E-02	6.62E-02	1.12E-01	6.88E-02	(a)
Shutdown Operation	LOOP-GR	0.50	123.46	1.59E-05	1.84E-03	1.56E-02	4.05E-03	(a)
	LOOP-WR	4.50	123.46	1.35E-02	3.38E-02	6.85E-02	3.64E-02	(a)
	All-LOOPs	0.37	3.03	7.32E-05	4.03E-02	5.21E-01	1.22E-01	(b)

⁽a) Homogeneous. The data rule out the possibility of wide variations among plants. The Jeffreys noninformative prior is used.

The results show that the LOOP-WR for critical operation data, the overall LOOP for critical operation data, and the overall LOOP for shutdown operation data can each be modeled using EB distributions with variation between plants. In the remaining data groupings, the data appear homogeneous (i.e., the variations among the plants are small). In those cases, the Jeffreys noninformative prior was updated with industry-level data to obtain a distribution. These distributions could be used in risk assessments and any PRA applications as prior distributions to be updated with plant-specific data.

2.2.2 Variations Over NERC Regions

In principle, it is possible to group the data in any number of ways (by season, year, site, state, proximity to the coast, or NERC regional entities) and to characterize how much variation exists among the subgroups. For example, rolling blackouts in California, hurricanes along the Gulf Coast, and ice storms in the Northeast have occurred in recent years. Attempting to detect and model all such variations is beyond the scope of this report. However, due to the significance of grid events that may affect multiple units at different sites, the critical operation LOOP-GR data have been grouped according to the NERC regional entities containing each plant to examine the variation in previous LOOP studies. Note that the NERC regional council names and boundaries are subject to change over the time. The original NERC regions used in NUREG/CR-6890 (Eide et al. 2005) were applied in the subsequent LOOP studies until INL/EXT-18-45359, *Analysis of Loss-of-Offsite-Power Events: 1987–2017* (Johnson, Ma, and Schroeder 2018). Since the 2018 LOOP study, the new NERC entities were incorporated in the regional variation analysis. See INL/EXT-19-54699, *Analysis of Loss-of-Offsite-Power Events: 1987–2018* (Johnson and Ma 2019).

A more recent change on the NERC regional entities was that the Florida regional entity member (or FRCC) was dissolved, and all entity members were transitioned to the Southeastern Electric Reliability Council (SERC) by July 1, 2019. NERC now encompasses six instead of seven regional entities. Further information on the regional entities can be obtained from

https://www.nerc.com/AboutNERC/keyplayers/Pages/default.aspx. This change was applied in the 2021 LOOP study (Johnson and Ma 2022). Figure 7 shows the NERC regional entity map with six regions.

The analysis results for the NERC regions derived from the EB method had the 5th percentile being more than three orders of magnitude lower than the mean of the distribution, and therefore, that approach is not recommended for use. Instead, a Bayesian update with Jeffreys noninformative prior was performed

⁽b) EB method was used. There appears to be variability between plants.

to provide a homogenous posterior distribution, as provided in Table 4. The simple MLE (with event count divided by exposure time) values are included in the table for reference only.

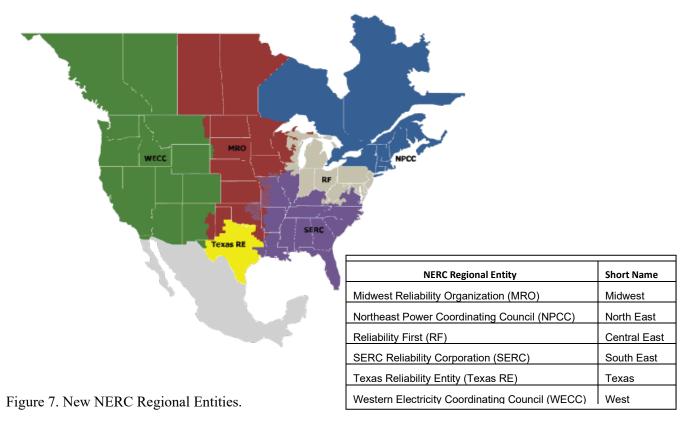


Table 4. Estimated LOOP-GR frequencies by NERC regional entities during critical operation (2008–2022).

,									
NERC Regional Entities	LOOP Events	Critical Years	Shape (α)	Scale (β)	5%	Median	95%	Gamma Mean	Simple MLE
Central East	4	341.22	4.5	341.22	4.87E-03	1.22E-02	2.48E-02	1.32E-02	1.17E-02
Midwest	0	124.94	0.5	124.94	1.57E-05	1.82E-03	1.54E-02	4.00E-03	0.00E+00
North East	3	139.32	3.5	139.32	7.78E-03	2.28E-02	5.05E-02	2.51E-02	2.15E-02
South East	0	621.96	0.5	621.96	3.16E-06	3.66E-04	3.09E-03	8.04E-04	0.00E+00
Texas	0	55.16	0.5	55.16	3.56E-05	4.12E-03	3.48E-02	9.07E-03	0.00E+00
West	0	88.95	0.5	88.95	2.21E-05	2.56E-03	2.16E-02	5.62E-03	0.00E+00

2.3 Summary of LOOP Event Count Data

Table 5 shows a summary of LOOP data for 1987–2022, including reactor years and LOOP counts by plant status and LOOP category. From this table, a 68% decrease in the total number of LOOPs from 1987–2007 (143 events) to 2008–2022 (46 events) can be calculated. This shows an overall improvement in LOOP event occurrences.

Figure 8–Figure 14 illustrate the above LOOP data in various charts. These LOOP data show the following:

- Reactor total operating years continue to decline as the number of NPPs decrease. However, the percentage of critical operation has increased. From 1987–2008, NPPs averaged 82% critical operation. For 2008–2022, NPPs averaged 92% critical operation (Figure 8).
- There were more shutdown operation LOOP events (79) than critical operation events (64) from 1987–2007, but more critical operation LOOP events (32) than shutdown operation events (14) since 2008 (Figure 9). There are 2 years without any LOOP events during the whole period from 1987–2022 (2010 and 2022).
- Of all the LOOP categories during all operations from 1987–2007 (Figure 10), LOOP-SC (69 out of 143 or 48%) has the most event counts, followed by LOOP-PC (32 or 23%), LOOP-WR (23 or 16%) and LOOP-GR (19 or 13%). For 2008–2022, LOOP-SC (17 out of 46 or 37%) has the highest event counts followed LOOP-WR (14 or 30%), LOOP-PC (8 or 18%), and LOOP-GR (7 or 15%)
- There were more LOOP-PC shutdown operation events (23) than critical operation events (9) from 1987–2007, but more LOOP-PC critical operation events (6) than shutdown operation events (2) since 2008 (Figure 11).
- No LOOP-SC shutdown operation events have occurred since 2015, and no LOOP-SC events have occurred since 2017 (Figure 12).
- No LOOP-GR shutdown operation events have occurred since 2008, and no LOOP-GR events have occurred since 2016 (Figure 13). The northeast blackout of August 2003 that affected eight plants simultaneously has a large influence on the LOOP-GR critical operational event counts.
- There were more LOOP-WR shutdown events (17) than LOOP-WR critical operation events (6) from 1987–2007 (Figure 14), but more critical operation events (10) than shutdown operation events (4) from 2008–2022.
- All LOOP events since 2017 have been either LOOP-PC or LOOP-WR.

Table 5. Summary of all U.S. NPP LOOP Event Count Data 1987–2022.

Calendar		Reactor Years	ctor Years Critical Operation						ıtdown	Opera	ıtion	Total by Operating Status		Total by Type				
										G								
Year	Critical	Shutdown	Total	PC	SC	GR	WR	PC	SC	R	WR	Up	Down	PC	SC	GR	WR	Total
1987	70.56	30.23	100.80	0	5	0	0	2	5	1	2	5	10	2	10	1	2	15
1988	76.19	30.77	106.96	1	3	0	0	1	4	0	1	4	6	2	7	0	1	10
1989	76.42	33.08	109.50	2	4	0	0	0	4	0	0	6	4	2	8	0	0	10
1990	80.66	29.23	109.88	0	1	0	0	0	3	0	0	1	3	0	4	0	0	4
1991	83.94	25.67	109.61	3	3	0	0	4	3	0	1	6	8	7	6	0	1	14
1992	83.61	24.64	108.25	2	3	1	0	4	1	0	2	6	7	6	4	1	2	13
1993	82.90	24.26	107.16	0	4	0	1	3	2	0	4	5	9	3	6	0	5	14
1994	85.80	21.20	107.00	0	0	0	0	2	1	0	0	0	3	2	1	0	0	3
1995	88.84	18.42	107.26	0	0	0	0	0	2	0	0	0	2	0	2	0	0	2
1996	87.09	21.91	109.00	0	1	0	2	0	2	0	0	3	2	0	3	0	2	5
1997	79.93	28.15	108.08	0	2	0	0	1	2	1	1	2	5	1	4	1	1	7
1998	84.39	21.61	106.00	0	0	0	1	2	1	0	1	1	4	2	1	0	2	5
1999	90.73	15.10	105.83	0	1	0	0	1	1	0	0	1	2	1	2	0	0	3
2000	92.92	10.08	103.00	1	0	0	0	1	3	0	0	1	4	2	3	0	0	5
2001	93.96	9.04	103.00	0	1	0	1	0	0	0	0	2	0	0	1	0	1	2
2002	94.88	8.12	103.00	0	1	0	0	0	0	0	0	1	0	0	1	0	0	1
2003	92.61	10.39	103.00	0	2	10	0	1	0	1	0	12	2	1	2	11	0	14
2004	94.94	8.06	103.00	0	1	3	1	0	0	0	2	5	2	0	1	3	3	7
2005	93.92	9.08	103.00	0	0	0	0	0	0	0	2	0	2	0	0	0	2	2
2006	94.34	8.66	103.00	0	3	0	0	1	0	0	0	3	1	1	3	0	0	4
2007	96.16	7.45	103.61	0	0	0	0	0	0	2	1	0	3	0	0	2	1	3
2008	95.43	8.57	104.00	0	0	0	0	0	3	0	0	0	3	0	3	0	0	3
2009	94.34	9.66	104.00	0	1	1	1	0	0	0	0	3	0	0	1	1	1	3
2010	95.44	8.56	104.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 5 (continued).

Calendar	I	Reactor Year	·s	Critical Operation				Shutdown Operation				Total by Operating Status		Total by Type					
										G									
Year	Critical	Shutdown	Total	PC	SC	GR	WR	PC	SC	R	WR	Up	Down	PC	SC	GR	WR	Total	
2011	92.61	11.39	104.00	0	2	0	5	0	1	0	0	7	1	0	3	0	5	8	
2012	90.02	13.98	104.00	1	3	1	0	0	2	0	1	5	3	1	5	1	1	8	
2013	91.23	10.34	101.57	1	2	1	1	1	1	0	0	5	2	2	3	1	1	7	
2014	92.44	7.56	100.00	0	0	2	0	0	1	0	0	2	1	0	1	2	0	3	
2015	91.44	7.56	99.00	0	0	2	1	0	0	0	0	3	0	0	0	2	1	3	
2016	92.18	6.77	98.95	2	1	0	0	0	0	0	1	3	1	2	1	0	1	4	
2017	91.87	7.13	99.00	1	0	0	0	0	0	0	0	1	0	1	0	0	0	1	
2018	91.89	6.86	98.75	0	0	0	0	1	0	0	1	0	2	1	0	0	1	2	
2019	90.97	6.02	96.99	1	0	0	0	0	0	0	0	1	0	1	0	0	0	1	
2020	88.50	6.49	95.00	0	0	0	2	0	0	0	0	2	0	0	0	0	2	2	
2021	87.15	6.18	93.33	0	0	0	0	0	0	0	1	0	1	0	0	0	1	1	
2022	86.02	6.39	92.41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Total	3196.3 4	518.61	3714.95	15	44	21	16	25	42	5	21	96	93	40	86	26	37	189	

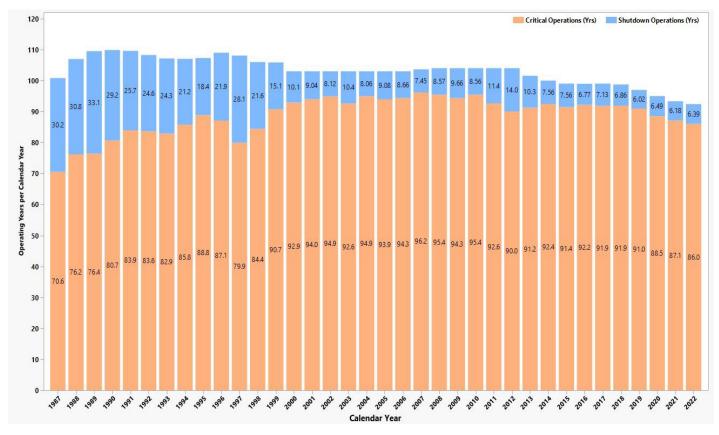


Figure 8. Reactor Operating Years (1987–2022).

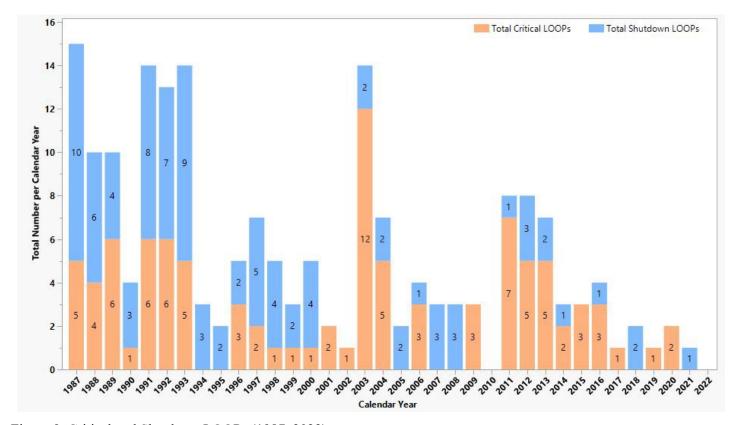


Figure 9. Critical and Shutdown LOOPs (1987–2022).

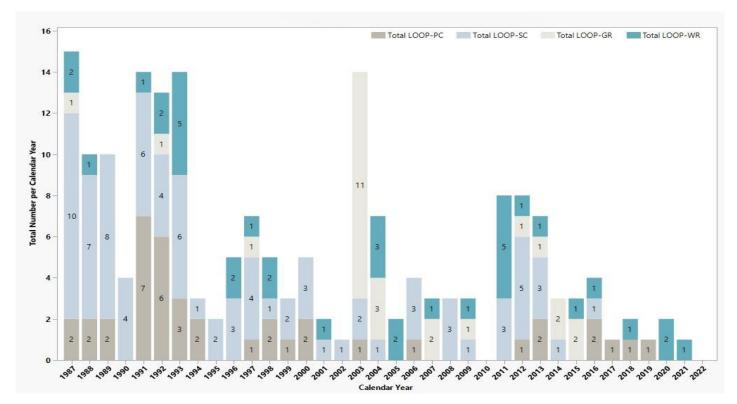


Figure 10. LOOP Event Counts by Category (1987–2022).

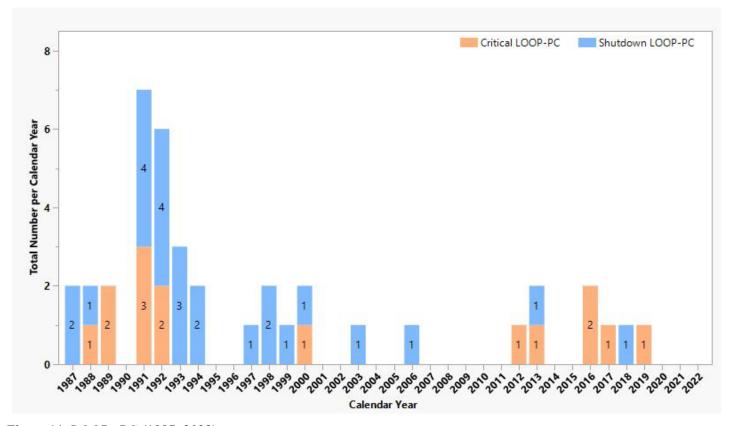


Figure 11. LOOPs-PC (1987–2022).

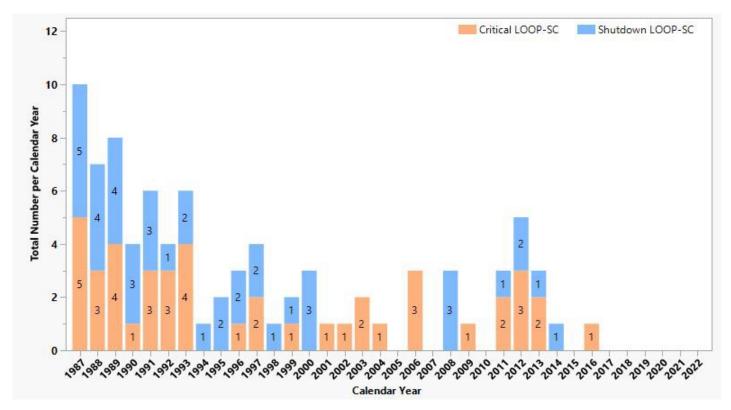


Figure 12. LOOPs-SC (1987–2022).

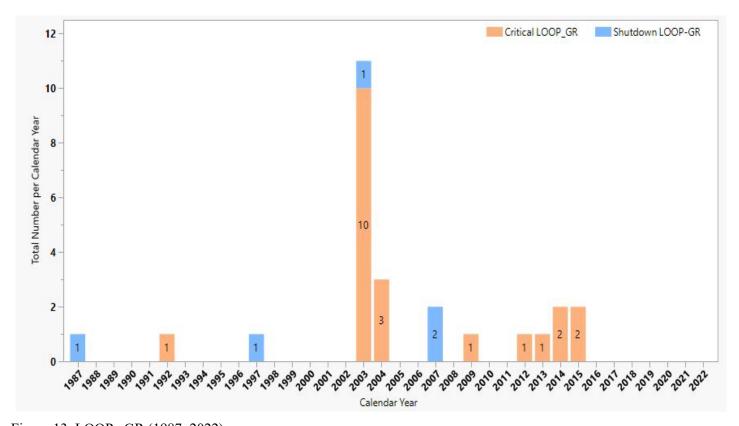
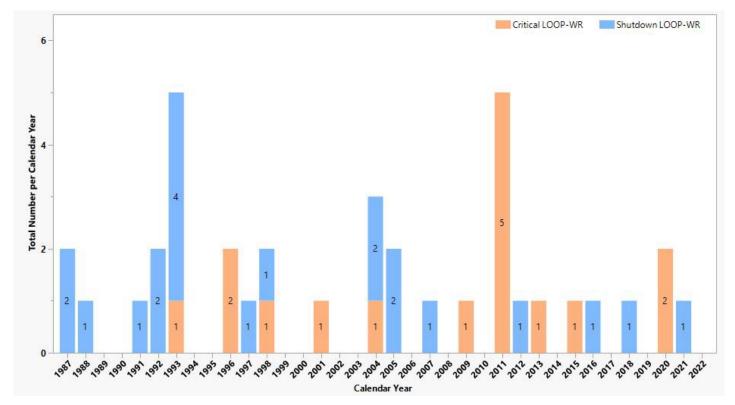



Figure 13. LOOPs-GR (1987–2022).

17

Figure 14. LOOPs-WR (1987–2022).

3. LOOP DURATION ANALYSIS

LOOP potential recovery times were selected as the parameter for modeling the duration of recovery times from LOOP. The recovery time is the duration, in minutes, from the event initiation until offsite electrical power could have been recovered to a safety bus (i.e., the potential bus restoration time). It is less than or equal to the actual bus restoration time (see the Glossary of this report and NUREG/CR-6890 for the discussions of the three LOOP recovery times: switchyard restoration time, potential bus restoration time, and actual bus restoration time).

When a LOOP event affects more than one unit at a site with multiple units, the duration of the event is defined as the time needed for all the affected units to be on offsite power. Thus, the duration associated with the plant unit with the longest duration time is the duration selected for the event. Individual unit duration times are not used in that situation in this study. This choice is based upon the assumption that the plant unit-level LOOP events on a single day are not independent; therefore, the time to recovery at each plant unit should not be treated as independent.

Two analyses were performed in conjunction with these times. First, the data were analyzed to see if trends in the recovery times exist. Then, distributions characterizing the times were estimated.

3.1 Trends in Recovery Times

As in previous LOOP update studies, the recovery time data were evaluated for trends using the period since deregulation (1997–2022).

The recovery times for each LOOP category were trended using log linear regression. The recovery time trend data are shown in Figure 15; Table 6 provides the trend equations for each of the data subsets.

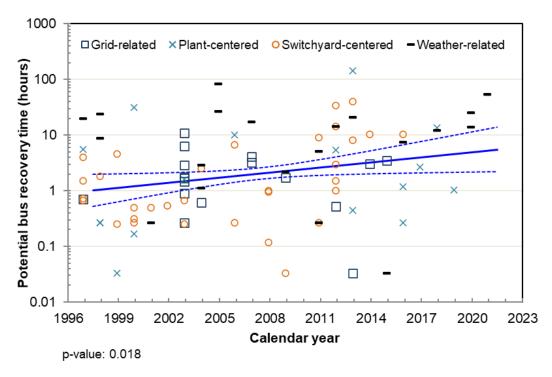


Figure 15. Statistically significant increasing trend for LOOP recovery times (all event types) from 1997–2022.

Table 6. Log linear regression of LOOP recovery times for the post-deregulation period (1997–2022).

LOOP Category	# of LOOP Events ^b	Trend Line Equation ^a	Standard Error of Slope	p-value	Trend and Significance
LOOP-PC	16	Exp(0.069 x (year-2022) +1.506)	0.07	0.322	No Trend
LOOP-SC	32	Exp(0.116 x (year-2022) +2.226)	0.05	0.016	Statistically Significant Increasing Trend
LOOP-GR	17	Exp(-0.038 x (year-2022) +0.262)	0.07	0.591	No Trend
LOOP-WR	20	Exp(0.012 x (year-2022) +1.976)	0.06	0.849	No Trend
All-LOOPS	85	Exp(0.071 x (year-2022) +1.782)	0.03	0.018	Statistically Significant Increasing Trend
Critical Operation	47	Exp(0.036 x (year-2022) +0.922)	0.04	0.375	No Trend
Shutdown Operation	38	Exp(0.134 x (year-2022) +3.303)	0.04	0.003	Highly Statistically Significant Increasing Trend

^a The best fitting regression line defined by exp(intercept + slope*(year difference)). The (year–2022) terms goes from -25 to 0.

The trend analysis of potential LOOP recovery times at the site level indicated:

- A statistically significant increasing trend for LOOPs-SC during all operations (p-value = 0.016)
- A statistically significant increasing trend for All-LOOPs during all operations (p-value = 0.018)
- A highly statistically significant increasing trend for All-LOOPs during shutdown operation (p-value = 0.003).

These increasing trends indicate that it takes longer to recover from the associated LOOP categories. They also highlight the possibility there may be underlying causes for the longer LOOP recoveries in the associated categories. There is no trend in recovery times for LOOPs-PC, LOOPs-GR, and LOOPs-WR during all operations, as well as for All-LOOPs during critical operation.

3.2 LOOP Recovery Times

This subsection presents the analysis on LOOP recovery times, or the probability of exceedance versus duration. For the study of LOOP duration, the largest possible data set was sought that could be considered representative of current operations. The presence of an adverse increasing trend in the duration data complicated the selection of a starting date. Using too much of the older data weights the durations in a non-conservative direction that cannot be considered representative of current industry conditions. Therefore, the largest population was sought with an end date in the most recent year that had a lognormal distribution. This resulted in using data from calendar years 1997 through 2022, since the data from 2008 through 2022 did not exhibit a lognormal distribution. Also, in accordance with NUREG-6890, the data for shutdown and critical operations have been combined.

As in previous LOOP update studies, the lognormal family of distributions was selected to model variation in the recovery times. The exceedance probabilities (one minus the cumulative distribution function value) that come from these distributions are useful in PRAs where a failure event involves recovery times exceeding a specified number of hours.

b Multi-Unit LOOPs are counted as a single LOOP when evaluating LOOP recovery time (see the discussion at the beginning of this section).

For the LOOP recovery times in each category, lognormal distributions were fitted using a method that matches moments. More specifically, since the logarithms of lognormal data follow a normal distribution, the first step in identifying the best lognormal distribution for each set of data is to find the best underlying normal distribution. All the recovery times are greater than zero, so the natural logarithms of the data were computed. The underlying normal distribution mean (μ) is estimated by the average of these data, and the standard deviation (σ) is estimated by the sample standard deviation. For use in PRA analyses using Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), the standard deviation of μ is computed as σ/\sqrt{n} , where n is the sample size. The standard deviation of σ is estimated by noting that, for normally distributed data, the sum of the squared deviations that form the numerator of the sample variance estimate, divided by the actual variance, has a chi-square distribution with (n-1) degrees of freedom. The variance of this distribution is 2(n-1). For any random variable X and constant, k, the variance of kX is k^2 times the variance of X. Therefore, the variance of the numerator sum is 2(n-1) times the square of the actual variance. After some algebraic manipulations, the estimate of the standard deviation of σ is given as $\sigma/\sqrt{2(n-1)}$.

The parameters of the fitted lognormal distributions are provided in Table 7. The fitted lognormal density and cumulative distribution functions for the recovery times are as follows:^c

$$f(t) = \frac{1}{t\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left[\frac{\ln(t) - \mu}{\sigma}\right]^2} \tag{1}$$

$$F(t) = \Phi\left[\frac{\ln(t) - \mu}{\sigma}\right] = \text{Prob[potential recovery time} \le t]$$
 (2)

Where:

t = offsite power potential bus recovery time

 μ = mean of natural logarithms of data

 σ = standard deviation of natural logarithms of data

 Φ = cumulative distribution function.^d

Note the values for μ and σ completely define the distribution; the lognormal median, mean, and 95th percentile of these distributions can then be found by direct calculation: $exp(\mu)$, $exp(\mu + \sigma^2/2)$, and $exp(\mu + 1.645\sigma)$, respectively.

^c Equation 1 corrects the expression in NUREG/CR-6890 and early annual LOOP reports (e.g., INL/EXT-18-45359).

d This term in Equation 2 corrects the term "error function" used in NUREG/CR-6890 and early annual LOOP reports (e.g., INL/EXT-18-45359).

Table 7. Fitted lognormal recovery time distributions (1997–2022).

Parameter	PC	sc	GR	WR
LOOP event count	16	32	17	20
Mu (µ)	0.53	0.33	0.35	1.83
Standard error of μ	0.55	0.30	0.33	0.44
Sigma (σ)	2.19	1.69	1.36	1.99
Standard error of σ	0.39	0.21	0.23	0.31
Fitted median, hour	1.69	1.39	1.42	6.20
Fitted mean, hour	18.61	5.78	3.57	44.49
Fitted 95th percentile, hour	62.07	22.35	13.26	162.47
Error factor	36.71	16.14	9.35	26.19

The results show LOOPs-GR have the shortest recovery times with a mean value of 3.57 hours, while the LOOPs-WR have the longest recovery times with a mean value of more than 44 hours. The above results also present significant differences when comparing the results from the 2018 update which used 1988–2018 data:

- Most LOOP categories have longer **mean** recovery times than the 2018 results: LOOPs-PC from 4.53 to 18.61 hours, LOOPs-SC from 3.53 to 5.78 hours, and LOOPs-WR from 40.98 to 44.49 hours. LOOPs-GR is the only category with a slightly shorter mean recovery time than the 2018 result, from 4.40 to 3.57 hours.
- It should also be noted that LOOPs-PC, LOOPs-SC, and LOOPs-WR have longer **median** recovery times than the 2018 results but to a smaller degree than in the mean recovery times as shown above: LOOPs-PC from 0.9 to 1.69 hours, LOOPs-SC from 1.16 to 1.39 hours, and LOOPs-WR from 5.62 to 6.20 hours. LOOPs-GR has a shorter median recovery time than the 2018 results: LOOPs-GR from 2.23 to 1.42 hours. The significant differences between the mean and median values (e.g., LOOPs-WR have a mean recovery time of about 44 hours versus a median value of about 6 hours) show that the events with very long recovery times skewed the results toward the right side.

The distributions in Table 7 are plotted as probability of exceedance versus duration curve (1-F(t)) in Figure 16. The probability of LOOP duration exceeding T hours can be obtained either by calculating the distribution function of 1-F(t) or by drawing a vertical line at t=T hours in the plot and reading the intersect point values for non-recovery probabilities (within T hours) for different LOOP categories. Figure 16 shows visually the LOOPs-GR have the shortest (on average) recovery times while the LOOPs-WR have the longest recovery times.

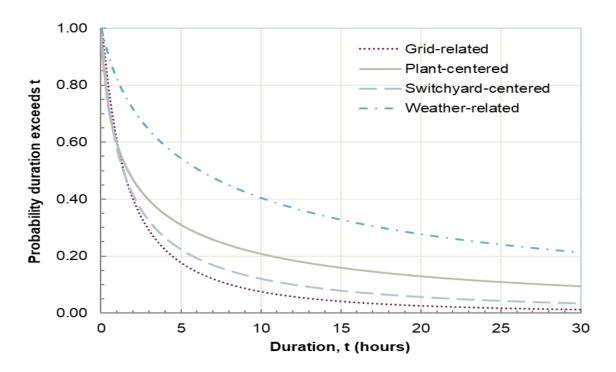


Figure 16. Probability of exceedance (non-recovery probability) vs. duration curves for all event types and operating modes (1997–2022).

4. SPECIAL TOPICS OF INTEREST

Several special topics are discussed in this section: seasonal variation in LOOP frequency, the effect of multi-unit LOOP events, and the consequential LOOP.

4.1 Seasonal Effects on LOOP Frequency

In 2003, Raughley and Lanik called attention to an emerging tendency for LOOPs-GR to occur during the summer:

This assessment noted that seven of the eight LOOPs (87%) involving a reactor trip since 1997 occurred in the summer—May to September—in contrast to 23 of 54 (44%) of LOOPs in the summers of 1985–1996 (Raughley and Lanik 2003).

The authors did not perform a formal statistical test, but readers of their report found this early evidence compelling.

Table 8 shows LOOP counts from 2008 based on the month of occurrence, plant-operating mode, and LOOP category.

The Rayleigh Test is a standard test for whether points are distributed uniformly around a circle (wind directions, fracture orientations) and adapts readily to testing whether a set of events is scattered uniformly through the year (Mardia and Jupp 2000). The test is applied separately for each column of Table 8.

Table 8. LOOP event counts by month and LOOP category by operating mode (2008–2022).

		Critical C	peration			Shutdown	Operation	
Month	PC	SC	GR	WR	PC	SC	GR	WR
Jan	0	2	0	1	0	0	0	0
Feb	1	0	0	1	0	1	0	0
Mar	1	0	0	0	1	1	0	1
Apr	2	2	2	5	0	2	0	0
May	0	1	2	0	1	1	0	0
Jun	0	0	0	0	0	0	0	0
Jul	1	1	2	0	0	0	0	0
Aug	1	2	0	3	0	0	0	1
Sep	0	0	0	0	0	0	0	0
Oct	0	1	1	0	0	1	0	2
Nov	0	0	0	0	0	1	0	0
Dec	0	0	0	0	0	1	0	0
p-values ^a	0.253	0.787	0.092	0.194	0.245	0.358	N/A ^b	0.525

^a Rayleigh Test.

Applying the Rayleigh test to the counts in Table 8 shows that the counts by LOOP category and by operating mode are uniformly distributed across the 12 months. The Rayleigh test indicates the counts are not uniform when p < 0.05.

Table 9 presents the LOOP counts by operating mode only, and the overall counts by month from 2008–2022 and the associated p-values from Rayleigh test, which show the follow statistically significant results:

^b Rayleigh's Test cannot be performed when there are not any events.

- The counts for All-LOOPs during all operations are not uniformly distributed across the 12 months. The variation is statistically significant (p-value = 0.025).
- The counts for All-LOOPs during critical operation is not uniformly distributed across the 12 months. The variation is statistically significant (p-value = 0.012).

The counts for LOOP-WR during all operations, interestingly, are uniform across the calendar year, attributable to the combination of disparate WR events (snow/ice, tornadoes, hurricanes) being such that their impact evens out over the year.

Table 9. LOOP event total counts b	v month and b	v LOOP category	or operating mode	(2008-2022).

		LOOP	Category		Operati	ng Mode	
Month	PC	SC	GR	WR	Critical	Shutdown	All-LOOPs
Jan	0	2	0	1	3	0	3
Feb	1	1	0	1	2	1	3
Mar	2	1	0	1	1	3	4
Apr	2	4	2	5	11	2	13
May	1	2	2	0	3	2	5
Jun	0	0	0	0	0	0	0
Jul	1	1	2	0	4	0	4
Aug	1	2	0	4	6	1	7
Sep	0	0	0	0	0	0	0
Oct	0	2	1	2	2	3	5
Nov	0	1	0	0	0	1	1
Dec	0	1	0	0	0	1	1
p-values ^a	0.065	0.615	0.092	0.623	0.012	0.600	0.025

a Rayleigh Test.

4.2 Multi-Unit LOOP Events

Like NUREG/CR-6890 and previous annual LOOP updates, the analysis of LOOP events in this study is at the plant level (or unit level), in contrast to the site level or regional level. For example, if a single weather event causes both units at a site to experience a LOOP, it is counted as two-unit-level LOOP events instead of one site-level LOOP event. This approach assumes the unit LOOP events are independent events. However, this is not consistent with experience, as demonstrated in the 2003 northeast blackout that affected nine units (eight in critical and one in shutdown) at seven sites.

Table 10 shows the multi-unit LOOP occurrences from 1987–2022 listed in chronological order. There were thirteen occasions during 1987–2007 and six occasions during 2008–2022 when more than one unit at a multi-unit site was affected by the same incident. The six occasions contributed 13 of the 46-unit events (from 2008–2022) counted in Table 2 (~28%), so that the simplifying assumption of treating each unit-level LOOP as independent, may be questioned. This section presents an alternative means to address the multi-unit LOOP issue.

Table 10. Multi-unit LOOP events for 1987–2022.

Event	Site	Date	Units at Site	Units Affected	LOOP Category	Mode
1	Calvert Cliffs	1987-07-23	2	All	SC	Critical Operation
2	Peach Bottom	1988-07-29	2	All	SC	Shutdown Operation
3	Turkey Point	1992-08-24	2	All	WR	Shutdown Operation1
4	Sequoyah	1992-12-31	2	All	SC	Critical Operation
5	Brunswick	1993-03-17	2	All	WR	Shutdown Operation
6	Beaver Valley	1993-10-12	2	All	SC	Critical Operation/ Shutdown Operation
7	Prairie Island	1996-06-29	2	All	WR	Critical Operation
8	Fitzpatrick/Nine Mile Point 1	2003-08-14	2	All	GR	Critical Operation
9	Indian Point	2003-08-14	2	All	GR	Critical Operation
10	Peach Bottom	2003-09-15	2	All	GR	Critical Operation
11	Palo Verde	2004-06-14	3	All	GR	Critical Operation
12	St. Lucie	2004-09-25	2	All	WR	Shutdown Operation
13	Catawba	2006-05-20	2	All	SC	Critical Operation
14	Surry	2011-04-16	2	All	WR	Critical Operation
15	Browns Ferry	2011-04-27	3	All	WR	Critical Operation2
16	North Anna	2011-08-23	2	All	SC	Critical Operation
17	Lasalle	2013-04-17	2	All	SC	Critical Operation
18	Millstone ^{3,4}	2014-05-25	2	All	GR	Critical Operation
19	Calvert Cliffs	2015-04-07	2	All	GR	Critical Operation
Total	_		40	40	_	_

^{1.} The units shut down in anticipation of bad weather. The weather events subsequently resulted in LOOPs at the site.

For multi-unit LOOP events, in general, there is a three-part question to be answered:

- First, what is the frequency of the underlying occurrence that led to the LOOP event?
- Second, how many sites were affected by the occurrence?
- Finally, how many units at each site were affected by the occurrence?

A qualitative analysis of the multi-unit LOOP event data provides the following insights:

- A LOOP-WR event is more likely to affect more than one unit at the same site within a few hours to a few days but is less likely to affect more than one site within a few hours to a few days.
- A LOOP-GR event could affect multiple sites, even sites hundreds of miles away (even as the likelihood of affecting two or more sites is low, the probability of affecting multiple sites is much

^{2.} Treated as though all three units experienced a LOOP, although a 161-kV offsite power line remained available for Browns Ferry 3. That unit also responded as though it, too, had experienced a LOOP. The # of units affected is changed from two to three in this study.

^{3.} Reclassified from SC to GR in the 2017 LOOP study [Johnson, Ma and Schroeder 2018].

^{4.} The number of units at the Millstone site is changed from three to two in this study. Millstone Unit 1 was decommissioned in June 1998. Any Millstone LOOP events that occurred after June 1998 should be treated as a dual-unit site instead of a three-unit site.

higher than a simple Poisson approximation would imply) and usually affects all units at the same site.

- A LOOP-SC event may affect more than one unit at the same site, depending on where in the switchyard it happens but should not affect other sites.
- A LOOP-PC event should not affect any other unit even at the same site.

From 2008 to 2022, there were 46 unit-level LOOP events, including 33 single-unit LOOP occurrences and six multi-unit events from the same occurrence, adding another 13 events. For 33 single-unit LOOPs, 17 occurred at single-unit sites, 13 occurred at two-unit sites, and three occurred at three-unit sites. For six multi-unit events, five involved both units at two-unit sites, and the other one involved all three units at a three-unit site. Table 11 shows the matrix of LOOP occurrences and unit-level LOOP events from 2008–2022, including LOOP events at multi-unit sites where only one unit shut down. In general, offsite power events affect multiple units, and as such, unit-based LOOP events are not independent.

Table 11. LOOP occurrences and unit-level LOOP events from 2008–2022.

		LOOP Occurrence		Unit-Level LOOP
Units/Site	Single-Unit	Two-Unit	Three-Unit	Events
Single	17	NA	NA	17
Two	13ª	5	0	23
Three	3	0	1	6
Total	33	5	1	46

a Any Millstone LOOP occurrences after June 1998, when Millstone Unit 1 was decommissioned, are counted as LOOPs on a two-unit site instead of three-unit site. There were two single-unit LOOPs (April 25, 2007, at Millstone Unit 3 and May 24, 2008, at Millstone Unit 2) and one multi-unit LOOP (May 23, 2014, at Millstone Units 2 and 3) at the Millstone site which were categorized as being from a two-unit site.

Table 12 estimates the conditional probability of all units at a multi-unit site experiencing a LOOP if at least one unit experiences a LOOP. The revised approach as in the 2020 LOOP study (Johnson and Ma 2021) (i.e., using the numbers of site-level LOOP events for both the numerator and the denominator in the estimations) was applied to obtain the results. As shown in this table, a large portion of the LOOP events affect multiple units, which further reveals that unit-level LOOP events may not be independent. Table 12 shows the results of the conditional probability of multi-unit LOOPs using the corrected approach and the data from 2008–2022.

Table 12. Conditional probability of all units at a multi-unit site experiencing a LOOP given a LOOP at one of the units using data from 2008–2022.

1	LOOP Event at Multi-Unit Sites Affecting All	LOOP Events at Multi-Unit Sites Affecting	Units Experie	onal Probabi at a Multi-U ncing a LOO t One Unit at	nit Site P Given a	Beta D Para	istribu ameter	
Loop Category	Units at the Site	At Least One Unit	5%	Median	Mean	95%	α	β
LOOP-PC	0	7	2.71E-04	3.09E-02	6.25E-02	2.32E-01	0.5	7.5
LOOP-SC	2	10	6.02E-02	2.10E-01	2.27E-01	4.52E-01	2.5	8.5
LOOP-GR	2	2	4.31E-01	9.04E-01	8.33E-01	9.99E-01	2.5	0.5
LOOP-WR	2	3	2.36E-01	6.48E-01	6.25E-01	9.38E-01	2.5	1.5
All Events	6	22	1.43E-01	2.76E-01	2.83E-01	4.44E-01	6.5	16.5

a The beta distributions reflect the proportion of the events that affected the other units. The distributions are obtained by updating the Jeffreys noninformative beta distribution prior, beta (α, β) = beta (0.5, 0.5), with the row-specific data. Since the beta distribution is a conjugate distribution for binomial data, the updated distribution in each row is also a beta distribution (0.5 + number of events affecting all units, 0.5 + number of events affecting just one unit). The mean is $\alpha / (\alpha + \beta) = (0.5 + \text{all-unit event count}) / (1 + \text{total events})$.

4.3 Consequential LOOPs

4.3.1 Consequential LOOP Given a Reactor Trip

NUREG/CR-6890 provides an estimate of conditional probabilities of a consequential LOOP (CLOOP) given a reactor trip, 5.3E-3 for the period 1997–2004 and 3.0E-3 for the period 1986–1996. The estimated conditional probability of 5.3E-3 has been used in the SPAR models to date. This study presents an update of the conditional probability using data from 2008–2022.

The estimation uses the same method as in NUREG/CR-6890 with the number of CLOOP events (LOOP-IE-C), the number of reactor trip, and the number of LOOP events that cause the reactor trip (LOOP-IE-I). The conditional probability of CLOOP given a reactor trip, p(CLOOP|RT), is calculated as (Bayesian update with Jeffreys noninformative prior):

$$p(CLOOP|RT) = (n_{CLOOP} + 0.5)/[(n_{RT} - n_{LOOP-IE-I}) + 1]$$
(3)

Where:

 n_{CLOOP} = number of CLOOP events

 n_{RT} = number of reactor trips (RTs)

 $n_{LOOP-IE-I}$ = number of LOOP events that cause the reactor trip.

There are currently six events classified as CLOOP events during the period 1987–2022: five CLOOPs from 1987–2007 and one CLOOP from 2008–2022 (see Table 13)^e. For the 1987–2007 period, there were 3,056 reactor trips, 56 of them caused by LOOP (i.e., 56 LOOP-IE-I events). For the 2008–2022 period, there were 839 reactor trips, 21 of them caused by LOOP.

e NUREG/CR-6890 lists nine CLOOP events from 1986–2004, in which two CLOOPs that occurred in 1986 are outside of the period in this study, two CLOOPs (LERs 2471999015 and 4162003002) have been recoded and are no longer classified as CLOOPs. One new CLOOP (LER 4132012001) occurred after the study in NUREG/CR-6890. Note that two once classified as CLOOPs (LERs 3352016003 and 2962019001) were recoded and removed from the CLOOP category.

Table 13. Consequential LOOP events from 1987–2022.

Event	LER	Plant Name	Date	LOOP Category
1	4551987019	Byron 2	10/2/1987	SC
2	3011989002	Point Beach 2	3/29/1989	SC
3	3951989012	Summer	7/11/1989	PCa
4	2371990002	Dresden 2	1/16/1990	SC
5	2191997010	Oyster Creek	8/1/1997	SC
6	4132012001	Catawba 1	4/4/2012	PC
a This eve	nt was recently reclas	sified from GR to PC in the	e 2020 update of this	study (Johnson and Ma 2021).

Table 14 shows the updated conditional probabilities of CLOOP given a reactor trip: 1.83E-3 for both the period of 2008–2022 and the period of 1987–2007. The results of those from NUREG/CR-6890 and NUREG-1784 (Raughley and Lanik 2003) are also provided in the table for comparison.

Table 14. Conditional probability of consequential LOOP given reactor trip.

	This Study		NUREG/	CR-6890	NUREG-1784f		
LOOP Classification	1987–2007	2008–2022	1986–1996	1997–2004	1985–1996	1997–2001	
CLOOPs	5	1	6	3	7	2	
Total Rx Trips (RTs)	3056	839	2,168	680	3,161	441	
LOOP-Caused Rx Trips	56	21	32	19	Not A ₁	pplied	
P(CLOOP RT)	1.83E-03	1.83E-03	3.00E-03	5.30E-03	2.20E-03	4.50E-03	

It should be noted that the estimations of LOOP frequency in Section 1 include consequential LOOP events in the calculation. This presents a potential double-counting issue if a PRA models consequential LOOPs separately from LOOP initiating events. To address that double-counting, Table 15 presents the adjusted industry-average critical operation LOOP frequencies after consequential LOOP events are excluded from the estimations. The adjusted gamma mean value of LOOP-PC frequency is 4.01E-3/rcry, almost a 15% reduction from 4.50E-3/rcry (see Table 3) before the adjusting. There is no impact on LOOP-SC, LOOP-GR, and LOOP-WR since there were no CLOOPs in these categories from 2008–2022. The overall critical operation LOOP frequency is 2.29E-2/rcry after the adjustment, a 2% reduction from 2.34E-2/rcry in Table 3.

 $^{^{\}rm f}$ NUREG-1784 does not exclude the LOOP-caused reactor trips from the CLOOP conditional probability estimations. Also, the estimation uses n(CLOOPs)/n(RTs) instead of the Bayesian update.

Table 15. Adjusted industry-average critical operation LOOP frequencies after excluding consequential LOOP events (2008–2022).

			Shape	Scale		
LOOP Category	Events	Critical Years	(α)	(β)	Gamma Mean	Notes
LOOP-PC	5	1371.54	5.5	1371.54	4.01E-03	(a)
LOOP-SC	9	1371.54	9.5	1371.54	6.93E-03	(a)
LOOP-GR	7	1371.54	7.5	1371.54	5.47E-03	(a)
LOOP-WR	10	1371.54	0.65	89.04	7.30E-03	(b)
All	31	1371.54	0.95	41.42	2.29E-02	(b)

⁽a) Homogeneous. The data rule out the possibility of wide variations among plants. The Jeffreys noninformative prior is used.

4.3.2 Consequential LOOP Given a LOCA

Conditional probability of a consequential LOOP given a loss-of-coolant accident (LOCA) event was not estimated in NUREG/CR-6890 or previous annual LOOP analyses but rather in other technical reports. This subsection does not provide an updated analysis on conditional probability of a consequential LOOP given a LOCA but rather presents the results from previous analyses. NUREG/CR-6538 (Martinez-Guridi et al. 1997) used data from 1984–1993 to estimate the conditional probability of a LOOP given a LOCA as 2.1E-2. A more recent Brookhaven National Laboratory report (Martinez-Guridi and Lehner, 2007) used data from January 1, 1986 to July 31, 2007 and estimated the generic conditional probability of LOOP given a large break LOCA to be 2.0E-2.

⁽b) EB method was used There appears to be variability between plants.

5. ENGINEERING ANALYSIS OF LOOP DATA

LOOP events from an engineering perspective are considered in this section, qualitative insights into LOOP events, and LOOP events are separated according to specific cause.

5.1 Qualitative Insights of LOOP Events by Cause

LOOP events from 2008–2022 can be classified by cause. For example, what type of weather event caused a LOOP-WR or what kind of human activity caused a LOOP-PC. In the following figures, LOOP events are classified by the unit status as defined in the LOOP database: Power-Ops (LOOP occurred during power operation) and Shutdown (unit shutdown at time of LOOP with insignificant decay heat). The legacy category of Decay Heat (unit has significant decay heat and is not in low-pressure cooling) is no longer used as the few such events were reclassified as either Power-Ops or Shutdown events.

Figure 17 categorizes LOOP events from equipment failure by failed component. Fifteen out of 46 LOOP events from 2008–2022 were caused by equipment. The largest subcategories are failed relays, circuits, and "other."

In Figure 18, LOOP events from human error are tallied according to the type of activity in progress at the time. There have been very few LOOPs from human error since 2008 (five out of 46 events). The most common events of this cause have been maintenance.

Figure 19 categorizes LOOP events by the type of natural disaster. Twenty-one out of 46, almost 46%, of the LOOP events from 2008–2022 were caused by natural hazards. The most common events of this cause have been tornadoes followed by hurricanes, lightning, and snow and wind.^g

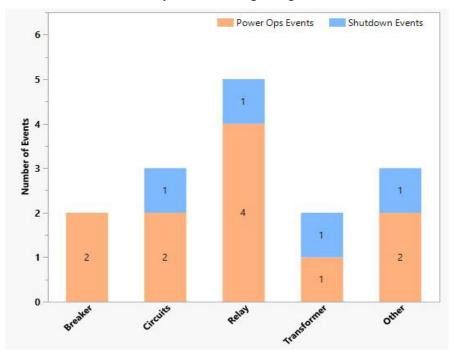


Figure 17. Failed components causing LOOP events from equipment failures (2008–2022).

_

^g Note that as explained in the Glossary section, a natural hazard caused LOOP event could be coded as plant-centered, switchyard-centered, or grid-related, instead of weather-related, if the event was localized to one unit rather than widespread. This is more so for lightning than other nature hazards such as hurricane and tornado due to the typically localized impacts from lightning.

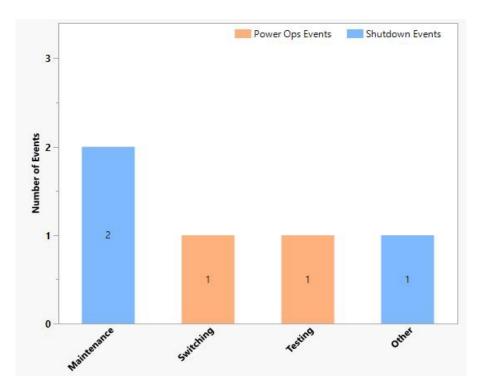


Figure 18. Activities causing LOOP events from human error (2008–2022).

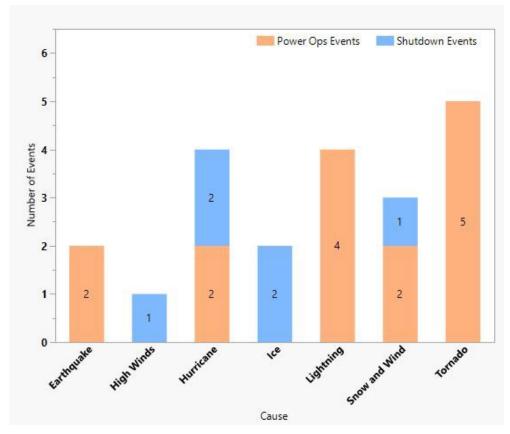


Figure 19. Natural disasters causing LOOP events from weather (2008–2022).

6. REFERENCES

- Eide, S, C. D. Gentillon, T. E. Wierman, and D. M. Rasmuson. 2005. "Reevaluation of Station Blackout Risk at Nuclear Power Plants." NUREG/CR-6890, Nuclear Regulatory Commission. https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6890/index.html.
- Johnson, N. and Z. Ma. 2019. "Analysis of Loss-of-Offsite-Power Events: 1987–2018." INL/EXT-19-54699, Idaho National Laboratory, Idaho Falls, ID. https://nrcoe.inl.gov/publicdocs/LOSP/loop-summary-update-2018.pdf.
- Johnson, N., Z. Ma and J. A. Schroeder. 2018. "Analysis of Loss-of-Offsite-Power Events: 1987–2017." INL/EXT-18-45359, Idaho National Laboratory, Idaho Falls, ID. https://nrcoe.inl.gov/publicdocs/LOSP/loop-summary-update-2017.pdf.
- Johnson, N. and Z. Ma. 2021. "Analysis of Loss-of-Offsite-Power Events 2020 Update." INL/EXT-21-64151, Idaho National Laboratory, Idaho Falls, ID. https://nrcoe.inl.gov/publicdocs/LOSP/loop-summary-update-2020.pdf.
- Johnson, N. and Z. Ma. 2022. "Analysis of Loss-of-Offsite-Power Events 2021 Update." INL/RPT-22-68809, Idaho National Laboratory, Idaho Falls, ID. https://inldigitallibrary.inl.gov/sites/sti/Sort 63130.pdf.
- Johnson, N. and Z Ma. 2021. "Initiating Event Rates at U.S. Nuclear Power Plants, 2020 Update." INL/EXT-21-63577, Idaho National Laboratory, Idaho Falls, ID. https://nrcoe.inl.gov/publicdocs/InitEvent/initiating-event-frequencies-and-trends-2020.pdf
- Ma, Z. 2019. "Enhanced Component Performance Study: Emergency Diesel Generators 1998-2018." INL/EXT-19-54609, Idaho National Laboratory, Idaho Falls, ID. https://doi.org/10.2172/1631738.
- Ma, Z. 2022. "Enhanced Component Performance Study: Emergency Diesel Generators 1998-2020." INL/RPT-22-66601, Idaho National Laboratory, Idaho Falls, ID. https://doi.org/10.2172/1894882.
- Ma, Z., T. E. Waierman, and K. J. Kvarfordt. 2021. "Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power Plants: 2020 Update." INL/EXT-21-65055, Idaho National Laboratory, Idaho Falls, ID. https://doi.org/10.2172/1847110.
- Mardia, K. and P. Jupp. 2000. "Directional Statistics, 2nd Ed." Chichester: *John Wiley & Sons Ltd.* http://palaeo.spb.ru/pmlibrary/pmbooks/mardia&jupp 2000.pdf.
- Raughley, W. S. and G. F. Lanik. 2003. "Operating Experience Assessment Effects of Grid Events on Nuclear Power Plant Performance." NUREG-1784, Nuclear Regulatory Commission. https://www.nrc.gov/docs/ML0335/ML033530400.pdf.

Appendix A LOOP Events Listing (1987–2022)

Page intentionally left blank

Appendix A LOOP Events Listing (1987–2022)

LOOP events were identified from licensee event reports (LERs) for 1987–2022. These events are listed in this appendix along with an explanation of the column's heading for the tables. Two tables are displayed, each representing a different breakdown of the information. The two tables are summarized below:

Table A-1 Listing of all LOOP events for 1987–2022, sorted by plant name.

Table A-2 Like Table A-1 but with information concerning the uncertainty in each of the three

restoration times listed.

Explanation of Column Headers for Table A-1 and Table A-2:

LER The LER number describing the LOOP Event.

Plant Name The name of the plant that experienced the LOOP event.

Date The date of the LOOP event.

Operating Mode Power-Ops or Critical - The LOOP event caused a plant trip during power

operation.

Shutdown - The LOOP event occurred during plant hot or cold shutdown or during plant startup. The Decay Heat mode defined in NUREG/CR-6890 (the plant is at a significant decay-heat point after the scram or shutdown, and it is not able to put a low-pressure shutdown cooling system online) is included in the Shutdown mode

in this study.

LOOP Category See the Glossary for detailed information on the four LOOP categories: GR (grid-

related), PC (plant-centered), SC (switchyard-centered), and WR (weather-related).

LOOP Class See the Glossary for detailed information on the LOOP classes: LOOP-IE-I,

LOOP-IE-C, LOOP-IE-NC, and LOOP-SD.

Restoration Time See the Glossary for detailed information on the three restoration times:

Switchyard Restoration Time, Potential Bus Recovery Time, and Actual Bus

Restoration Time.

Cause EEE - Extreme external events: hurricane, winds \geq 125 mph, tornado,

earthquake \geq R7, flooding \geq 500-year flood for the site, sabotage

EQUIP - Hardware related failures

G - Interconnected grid transmission line events, outside direct plant control

HE - Human error during any operating mode HES - Human error during any shutdown mode

SEE - Severe external events: lightening, high winds (< 125 mph), snow and ice, salt spray, dust contamination, fires and smoke contamination, earthquake < R7,

flooding < 500-year flood for the site

It should be noted that depending on whether the hazard impact is localized or widespread and where the induced fault is, a natural hazard caused LOOP event could be coded into a different LOOP category (e.g., LOOP-PC, LOOP-SC, or LOOP-GR) other than LOOP-WR. This is more so for lightning than other nature hazards such as hurricanes and tornadoes due to the typically localized impacts from lightning.

A specific cause is based on the selection of the Cause. Specific causes are listed below.

Cause	Specific Cause	Specific Cause Description
EEE	Earthquake ≥ 7.0	Earthquake ≥ 7.0 on the Richter Scale
EEE	Flooding \geq 500 year	Flooding \geq 500-year flood for the site
EEE	Hurricane	Hurricane, Winds ≥ 125 mph
EEE	Tornado	Tornado
EQUIP	Breaker	Direct circuit breaker failure or failure of controls specific to one circuit breaker
EQUIP	Circuits	Failure of general protective/sensing circuits such as blackout detection or generator voltage regulator failures, etc.
EQUIP	Other	All other equipment failures including discovery of design failures
EQUIP	Relay	All relay failures, except relays for transformer or individual circuit breaker controls
EQUIP	Transformer	Direct transformer failure or failure of transformer auxiliary equipment
G	Equip - other	Grid equipment failure
G	Other - fire	Grid-centered fire
G	Other - load	Grid power reduction (brownout)
HE	Maintenance	Errors by maintenance personnel that directly or indirectly caused an event
HE	Other	All other human errors
HE	Switching	Errors during electrical switching operations, not directly required by testing, generally involving breaker manipulation
HE	Testing	Errors by test personnel including errors while establishing or restoring from testing lineups including electrical distribution changes
HES	Maintenance	Errors by maintenance personnel that directly or indirectly caused an event
HES	Other	All other human errors
HES	Switching	Errors during electrical switching operations, not directly required by testing, generally involving breaker manipulation
HES	Testing	Errors by test personnel including errors while establishing or restoring from testing lineups including electrical distribution changes
Other	Mayflies	Mayflies
Other	Sabotage	Sabotage
SEE	Dust	Dust raised up by the wind
SEE	Earthquake	Earthquake < 7.0 on the Richter Scale
SEE	Fire	Fire
SEE	Flooding	Flooding < 500-year flood for the site
SEE	High Winds	High winds < 125 mph
SEE	Ice	Ice

Cause	Specific Cause	Specific Cause Description
SEE	Lightning	Lightning
SEE	Rain	Rain
SEE	Salt Spray	Salt spray
SEE	Smoke	Smoke contamination
SEE	Snow	Snow
SEE	Snow and Wind	Combination of snow and wind

Restoration time uncertainties include:

- C Known The restoration time is certain.
- U Unknown No information is available concerning the restoration time.
- E Estimated The restoration time was estimated based on information in the LER.

Page intentionally left blank

Table A-1. LOOP events for 1987–2022, sorted by plant.

						Restor	ation Time (m	_		
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Switchyard Restoration Time	Potential Bus Recovery Time	Actual Bus Restoration Time	Cause	Specific Cause
3132013001	Arkansas 1	3/31/2013	Shutdown	PC	LOOP-SD	unk.	8640	8640	HES	Other
3341993013	Beaver Valley 1	10/12/1993	Critical	SC	LOOP-IE-I	15	28	28	HES	Maintenance
<u>4121987036</u>	Beaver Valley 2	11/17/1987	Critical	SC	LOOP-IE-I	0	4	4	Equip	Breaker
3341993013	Beaver Valley 2	10/12/1993	Shutdown	SC	LOOP-SD	15	28	28	HES	Maintenance
1551992000	Big Rock Point	1/29/1992	Shutdown	SC	LOOP-SD	77	82	82	Equip	Other
<u>4561987048</u>	Braidwood 1	9/11/1987	Shutdown	SC	LOOP-SD	62	63	63	Equip	Transformer
<u>4561988022</u>	Braidwood 1	10/16/1988	Critical	SC	LOOP-IE-I	95	118	213	Equip	Breaker
<u>4561998003</u>	Braidwood 1	9/6/1998	Shutdown	WR	LOOP-SD	528	533	533	SEE	High Winds
<u>4572009002</u>	Braidwood 2	7/30/2009	Critical	SC	LOOP-IE-I	1	2	3097	Equip	Relay
<u>2592011001</u>	Browns Ferry 1	4/27/2011	Critical	WR	LOOP-IE-I	1	16	7414	EEE	Tornado
<u>2592011001</u>	Browns Ferry 2	4/27/2011	Critical	WR	LOOP-IE-I	1	16	7414	EEE	Tornado
<u>2961997001</u>	Browns Ferry 3	3/5/1997	Shutdown	SC	LOOP-SD	39	44	44	Equip	Transformer
<u>2592011001</u>	Browns Ferry 3	4/27/2011	Critical	WR	LOOP-IE-I	1	16	7414	EEE	Tornado
<u>2962012003</u>	Browns Ferry 3	5/22/2012	Critical	SC	LOOP-IE-I	86	91	101	Equip	Relay
<u>2962019001</u>	Browns Ferry 3	3/9/2019	Critical	PC	LOOP-IE-NC	60	62	781	HE	Switching
3251993008	Brunswick 1	3/17/1993	Shutdown	WR	LOOP-SD	1120	1125	1508	SEE	Salt Spray
3252000001	Brunswick 1	3/3/2000	Shutdown	SC	LOOP-SD	15	30	136	HES	Testing
3252004002	Brunswick 1	8/14/2004	Critical	WR	LOOP-IE-I	167	172	183	EEE	Hurricane

Analysis of Loss-of-Offsite-Power Event

39

2022 Update July 2023

						Restor	ation Time (m	_		
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Switchyard Restoration Time	Potential Bus Recovery Time	Actual Bus Restoration Time	Cause	Specific Cause
<u>3252016001</u>	Brunswick 1	2/7/2016	Critical	PC	LOOP-IE-I	1	16	196	Equip	Breaker
3252020003	Brunswick 1	8/3/2020	Critical	WR	LOOP-IE-I	838	839	898	EEE	Hurricane
3241989009	Brunswick 2	6/17/1989	Critical	SC	LOOP-IE-I	85	90	403	HE	Maintenance
<u>3251993008</u>	Brunswick 2	3/16/1993	Shutdown	WR	LOOP-SD	813	818	1018	SEE	Salt Spray
<u>3241994008</u>	Brunswick 2	5/21/1994	Shutdown	PC	LOOP-SD	2	17	42	HES	Testing
<u>3242006001</u>	Brunswick 2	11/1/2006	Critical	SC	LOOP-IE-I	1	16	1456	Equip	Transformer
<u>4541996007</u>	Byron 1	5/23/1996	Shutdown	SC	LOOP-SD	715	720	1763	Equip	Transformer
<u>4542014003</u>	Byron 1	3/15/2014	Shutdown	SC	LOOP-SD	613	613	613	Equip	Transformer
<u>4551987019</u>	Byron 2	10/2/1987	Critical	SC	LOOP-IE-C	1	16	507	HES	Switching
<u>4542012001</u>	Byron 2	1/30/2012	Critical	SC	LOOP-IE-I	1	2035	2172	Equip	Transformer
<u>3171987012</u>	Calvert Cliffs 1	7/23/1987	Critical	SC	LOOP-IE-I	113	118	118	Equip	Circuits
3172015002	Calvert Cliffs 1	4/7/2015	Critical	GR	LOOP-IE-I	200	210	210	G	Equip - other
<u>3171987012</u>	Calvert Cliffs 2	7/23/1987	Critical	SC	LOOP-IE-I	113	118	118	Equip	Circuits
<u>3172015002</u>	Calvert Cliffs 2	4/7/2015	Critical	GR	LOOP-IE-NC	19	29	29	G	Equip - other
<u>4132006001</u>	Catawba 1	5/20/2006	Critical	SC	LOOP-IE-I	385	400	542	Equip	Circuits
<u>4132012001</u>	Catawba 1	4/4/2012	Critical	PC	LOOP-IE-C	325	326	326	Equip	Circuits
<u>4141996001</u>	Catawba 2	2/6/1996	Critical	SC	LOOP-IE-I	115	120	330	Equip	Transformer
<u>4132006001</u>	Catawba 2	5/20/2006	Critical	SC	LOOP-IE-I	372	387	570	Equip	Circuits
<u>4132012001</u>	Catawba 2	4/4/2012	Shutdown	SC	LOOP-SD	60	61	393	Equip	Circuits

						Restor	ation Time (m			
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Switchyard Restoration Time	Potential Bus Recovery Time	Actual Bus Restoration Time	Cause	Specific Cause
<u>4611999002</u>	Clinton 1	1/6/1999	Shutdown	SC	LOOP-SD	270	275	492	Equip	Other
<u>3971989016</u>	Columbia	5/14/1989	Shutdown	SC	LOOP-SD	0	15	29	HES	Maintenance
<u>3151991004</u>	Cook 1	5/12/1991	Critical	PC	LOOP-IE-I	0	15	81	Equip	Other
3021987025	Crystal River 3	10/16/1987	Shutdown	SC	LOOP-SD	18	28	59	HES	Maintenance
3021989023	Crystal River 3	6/16/1989	Critical	SC	LOOP-IE-I	60	65	65	HE	Testing
3021989025	Crystal River 3	6/29/1989	Shutdown	SC	LOOP-SD	0	2	2	SEE	Lightning
3021991010	Crystal River 3	10/20/1991	Shutdown	PC	LOOP-SD	0	4	4	HES	Other
3021992001	Crystal River 3	3/27/1992	Critical	PC	LOOP-IE-I	20	30	150	HE	Maintenance
3021993000	Crystal River 3	3/17/1993	Shutdown	WR	LOOP-SD	72	77	102	SEE	Salt Spray
3021993002	Crystal River 3	3/29/1993	Shutdown	WR	LOOP-SD	0	15	37	SEE	Flooding
3021993004	Crystal River 3	4/8/1993	Shutdown	PC	LOOP-SD	1	16	136	HES	Maintenance
3461998006	Davis-Besse	6/24/1998	Critical	WR	LOOP-IE-I	1364	1428	1495	EEE	Tornado
<u>3462000004</u>	Davis-Besse	4/22/2000	Shutdown	PC	LOOP-SD	5	10	10	HES	Testing
3462003009	Davis-Besse	8/14/2003	Shutdown	GR	LOOP-SD	652	657	849	G	Other - load
2751991004	Diablo Canyon 1	3/7/1991	Shutdown	SC	LOOP-SD	261	285	285	HES	Maintenance
2751995014	Diablo Canyon 1	10/21/1995	Shutdown	SC	LOOP-SD	40	45	951	HES	Maintenance
2752000004	Diablo Canyon 1	5/15/2000	Critical	PC	LOOP-IE-I	1901	1906	2014	Equip	Other
<u>2752007001</u>	Diablo Canyon 1	5/12/2007	Shutdown	GR	LOOP-SD	209	245	279	Equip	Other
3231988008	Diablo Canyon 2	7/17/1988	Critical	SC	LOOP-IE-I	33	38	38	Equip	Transformer

						Restora	ation Time (m	-		
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Switchyard Restoration Time	Potential Bus Recovery Time	Actual Bus Restoration Time	Cause	Specific Cause
2371990002	Dresden 2	1/16/1990	Critical	SC	LOOP-IE-C	0	45	759	Equip	Transformer
<u>2491989001</u>	Dresden 3	3/25/1989	Critical	SC	LOOP-IE-I	45	50	50	Equip	Breaker
<u>2492004003</u>	Dresden 3	5/5/2004	Critical	SC	LOOP-IE-I	146	151	151	Equip	Breaker
3311990007	Duane Arnold	7/9/1990	Shutdown	SC	LOOP-SD	0	37	37	HES	Testing
3312007004	Duane Arnold	2/24/2007	Shutdown	WR	LOOP-SD	5	1048	1829	SEE	Ice
3312020001	Duane Arnold	8/10/2020	Critical	WR	LOOP-IE-I	1514	1515	1634	EEE	Hurricane
3482000005	Farley 1	4/9/2000	Shutdown	SC	LOOP-SD	18	19	19	Equip	Relay
3412003002	Fermi 2	8/14/2003	Critical	GR	LOOP-IE-I	379	384	582	G	Other - load
3331988011	FitzPatrick	10/31/1988	Shutdown	WR	LOOP-SD	1	16	70	SEE	High Winds
3332003001	FitzPatrick	8/14/2003	Critical	GR	LOOP-IE-I	169	174	414	G	Other - load
3332012005	FitzPatrick	10/5/2012	Shutdown	SC	LOOP-SD	847	847	847	HE	Maintenance
<u>2851987008</u>	Fort Calhoun	3/21/1987	Shutdown	SC	LOOP-SD	37	38	38	HES	Maintenance
2851987009	Fort Calhoun	4/4/1987	Shutdown	SC	LOOP-SD	0	4	4	HES	Maintenance
2851990006	Fort Calhoun	2/26/1990	Shutdown	SC	LOOP-SD	0	14	14	HES	Maintenance
2851998005	Fort Calhoun	5/20/1998	Shutdown	SC	LOOP-SD	104	109	109	Equip	Transformer
2851999004	Fort Calhoun	10/26/1999	Shutdown	PC	LOOP-SD	2	2	2	Equip	Other
2442003002	Ginna	8/14/2003	Critical	GR	LOOP-IE-I	49	54	297	G	Other - load
4162003002	Grand Gulf	4/24/2003	Critical	SC	LOOP-IE-NC	1	15	75	SEE	High Winds
2131993009	Haddam Neck	6/22/1993	Shutdown	PC	LOOP-SD	12	27	35	Equip	Circuits

						Restor	ation Time (m	_		
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Switchyard Restoration Time	Potential Bus Recovery Time	Actual Bus Restoration Time	Cause	Specific Cause
<u>2131993010</u>	Haddam Neck	6/26/1993	Shutdown	PC	LOOP-SD	3	18	40	Equip	Circuits
4002016005	Harris	10/8/2016	Shutdown	WR	LOOP-SD	unk.	443	524	EEE	Hurricane
<u>2471991006</u>	Indian Point 2	3/20/1991	Shutdown	SC	LOOP-SD	0	15	29	Equip	Other
<u>2471991010</u>	Indian Point 2	6/22/1991	Shutdown	PC	LOOP-SD	0	60	60	Equip	Breaker
<u>2471998013</u>	Indian Point 2	9/1/1998	Shutdown	PC	LOOP-SD	1	16	67	HES	Testing
<u>2471999015</u>	Indian Point 2	8/31/1999	Critical	SC	LOOP-IE-NC	1	15	779	Equip	Circuits
<u>2472003005</u>	Indian Point 2	8/14/2003	Critical	GR	LOOP-IE-I	97	102	214	G	Other - load
2861995004	Indian Point 3	2/27/1995	Shutdown	SC	LOOP-SD	30	40	132	HES	Maintenance
2861996002	Indian Point 3	1/20/1996	Shutdown	SC	LOOP-SD	30	40	145	Equip	Transformer
<u>2861997008</u>	Indian Point 3	6/16/1997	Shutdown	GR	LOOP-SD	37	42	42	HE	Maintenance
<u>2862003005</u>	Indian Point 3	8/14/2003	Critical	GR	LOOP-IE-I	97	102	241	G	Other - load
<u>3731993015</u>	La Salle 1	9/14/1993	Critical	SC	LOOP-IE-I	0	15	70	Equip	Transformer
<u>3732013002</u>	La Salle 1	4/17/2013	Critical	SC	LOOP-IE-NC	481	481	482	SEE	Lightning
3732013002	La Salle 2	4/17/2013	Critical	SC	LOOP-IE-NC	481	481	482	SEE	Lightning
<u>3091988006</u>	Maine Yankee	8/13/1988	Critical	SC	LOOP-IE-I	14	15	15	Equip	Transformer
<u>3691987021</u>	McGuire 1	9/16/1987	Shutdown	PC	LOOP-SD	0	6	6	HES	Testing
<u>3691991001</u>	McGuire 1	2/11/1991	Critical	PC	LOOP-IE-I	0	40	60	HE	Testing
<u>3691988014</u>	McGuire 2	6/24/1988	Shutdown	SC	LOOP-SD	8	8	8	HES	Switching
<u>3701993008</u>	McGuire 2	12/27/1993	Critical	SC	LOOP-IE-I	96	101	131	Equip	Transformer

						Restor	ation Time (m	_		
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Switchyard Restoration Time	Potential Bus Recovery Time	Actual Bus Restoration Time	Cause	Specific Cause
<u>2451989012</u>	Millstone 1	4/29/1989	Shutdown	SC	LOOP-SD	0	15	75	HES	Other
3361988011	Millstone 2	10/25/1988	Critical	PC	LOOP-IE-I	19	29	29	HE	Maintenance
3362008004	Millstone 2	5/24/2008	Shutdown	SC	LOOP-SD	57	57	1612	G	Equip - other
3362014006	Millstone 2	5/25/2014	Critical	GR	LOOP-IE-NC	179	184	209	Equip	Other
4232007002	Millstone 3	4/25/2007	Shutdown	GR	LOOP-SD	133	193	220	HES	Switching
3362014006	Millstone 3	5/25/2014	Critical	GR	LOOP-IE-NC	179	184	209	Equip	Other
2202003002	Nine Mile Pt. 1	8/14/2003	Critical	GR	LOOP-IE-NC	105	110	448	G	Other - load
<u>4101988062</u>	Nine Mile Pt. 2	12/26/1988	Shutdown	SC	LOOP-SD	9	24	54	Equip	Transformer
<u>4101992006</u>	Nine Mile Pt. 2	3/23/1992	Shutdown	PC	LOOP-SD	20	30	50	HES	Maintenance
<u>4102003002</u>	Nine Mile Pt. 2	8/14/2003	Critical	GR	LOOP-IE-I	100	105	551	G	Other - load
3382011003	North Anna 1	8/23/2011	Critical	SC	LOOP-IE-NC	467	547	547	SEE	Earthquake
3382011003	North Anna 2	8/23/2011	Critical	SC	LOOP-IE-NC	467	547	547	SEE	Earthquake
<u>2701992004</u>	Oconee 2	10/19/1992	Critical	PC	LOOP-IE-I	207	207	207	HE	Maintenance
<u>2871987002</u>	Oconee 3	3/5/1987	Shutdown	SC	LOOP-SD	150	155	155	HES	Maintenance
<u>2872006001</u>	Oconee 3	5/15/2006	Shutdown	PC	LOOP-SD	606	606	1730	HES	Maintenance
<u>2872018002</u>	Oconee 3	5/10/2018	Shutdown	PC	LOOP-SD	807	807	807	Equip	Relay
<u>2191989015</u>	Oyster Creek	5/18/1989	Critical	PC	LOOP-IE-I	1	16	54	HE	Maintenance
<u>2191992005</u>	Oyster Creek	5/3/1992	Critical	GR	LOOP-IE-I	5	65	1029	SEE	Fire
<u>2191997010</u>	Oyster Creek	8/1/1997	Critical	SC	LOOP-IE-C	30	40	40	Equip	Relay

						Restor	ation Time (m	_		
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Switchyard Restoration Time	Potential Bus Recovery Time	Actual Bus Restoration Time	Cause	Specific Cause
<u>2192009005</u>	Oyster Creek	7/12/2009	Critical	GR	LOOP-IE-I	94	103	103	SEE	Lightning
<u>2192012001</u>	Oyster Creek	7/23/2012	Critical	GR	LOOP-IE-I	1	31	88	Equip	Relay
2192012002	Oyster Creek	10/29/2012	Shutdown	WR	LOOP-SD	861	861	861	SEE	High Winds
<u>2551987024</u>	Palisades	7/14/1987	Critical	SC	LOOP-IE-I	388	388	446	HE	Maintenance
<u>2551992032</u>	Palisades	4/6/1992	Shutdown	PC	LOOP-SD	0	15	30	HES	Testing
2551998013	Palisades	12/22/1998	Shutdown	PC	LOOP-SD	1	16	20	Equip	Transformer
<u>2552003003</u>	Palisades	3/25/2003	Shutdown	PC	LOOP-SD	91	96	3261	HES	Maintenance
<u>5282004006</u>	Palo Verde 1	6/14/2004	Critical	GR	LOOP-IE-I	32	37	57	G	Equip - other
<u>5282004006</u>	Palo Verde 2	6/14/2004	Critical	GR	LOOP-IE-I	32	37	106	G	Equip - other
5282004006	Palo Verde 3	6/14/2004	Critical	GR	LOOP-IE-I	32	37	59	G	Equip - other
2771988020	Peach Bottom 2	7/29/1988	Shutdown	SC	LOOP-SD	9	24	125	Equip	Transformer
2772003004	Peach Bottom 2	9/15/2003	Critical	GR	LOOP-IE-I	1	16	41	Equip	Relay
2771988020	Peach Bottom 3	7/29/1988	Shutdown	SC	LOOP-SD	9	24	125	Equip	Transformer
2772003004	Peach Bottom 3	9/15/2003	Critical	GR	LOOP-IE-I	1	16	103	Equip	Relay
4402003002	Perry	8/14/2003	Critical	GR	LOOP-IE-I	82	87	123	G	Other - load
<u>2931987005</u>	Pilgrim	3/31/1987	Shutdown	WR	LOOP-SD	1	16	45	SEE	High Winds
<u>2931987014</u>	Pilgrim	11/12/1987	Shutdown	WR	LOOP-SD	1258	1263	1263	SEE	Salt Spray
<u>2931989010</u>	Pilgrim	2/21/1989	Shutdown	SC	LOOP-SD	1	16	920	Equip	Other
<u>2931991024</u>	Pilgrim	10/30/1991	Decay Heat	WR	LOOP-SD	109	114	152	SEE	Salt Spray

						Restor	ation Time (m	_		
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Switchyard Restoration Time	Potential Bus Recovery Time	Actual Bus Restoration Time	Cause	Specific Cause
<u>2931993004</u>	Pilgrim	3/13/1993	Critical	WR	LOOP-IE-I	30	40	298	SEE	Snow
<u>2931993010</u>	Pilgrim	5/19/1993	Shutdown	SC	LOOP-SD	36	37	37	HES	Testing
2931993022	Pilgrim	9/10/1993	Critical	SC	LOOP-IE-I	10	25	200	SEE	Lightning
<u>2931997007</u>	Pilgrim	4/1/1997	Shutdown	WR	LOOP-SD	347	1200	1409	SEE	High Winds
<u>2932008007</u>	Pilgrim	12/20/2008	Shutdown	SC	LOOP-SD	2	60	120	SEE	Ice
<u>2932013003</u>	Pilgrim	2/8/2013	Critical	WR	LOOP-IE-I	656	1258	1843	SEE	Snow and Wind
<u>2932013003</u>	Pilgrim	2/10/2013	Shutdown	SC	LOOP-SD	2271	2387	3333	SEE	Ice
<u>2932013009</u>	Pilgrim	10/14/2013	Critical	GR	LOOP-IE-I	1	2	1382	G	Equip - other
<u>2932015001</u>	Pilgrim	1/27/2015	Critical	WR	LOOP-IE-I	1	2	3641	SEE	Snow and Wind
<u>2932018004</u>	Pilgrim	3/13/2018	Shutdown	WR	LOOP-SD	720	721	4018	SEE	Snow and Wind
<u>2661992003</u>	Point Beach 1	4/28/1992	Shutdown	PC	LOOP-SD	0	15	30	HES	Maintenance
<u>2662011001</u>	Point Beach 1	11/27/2011	Shutdown	SC	LOOP-SD	1	16	334	Equip	Other
3011989002	Point Beach 2	3/29/1989	Critical	SC	LOOP-IE-C	90	95	202	HE	Maintenance
<u>2661994010</u>	Point Beach 2	9/27/1994	Shutdown	PC	LOOP-SD	0	15	15	HES	Switching
2821996012	Prairie Island 1	6/29/1996	Critical	WR	LOOP-IE-I	296	301	301	SEE	High Winds
2821996012	Prairie Island 2	6/29/1996	Critical	WR	LOOP-IE-I	296	301	301	SEE	High Winds
<u>2651991005</u>	Quad Cities 1	4/2/1991	Shutdown	PC	LOOP-SD	unk.	unk.	unk.	Equip	Transformer
<u>2651992011</u>	Quad Cities 2	4/2/1992	Shutdown	PC	LOOP-SD	35	35	35	Equip	Transformer
<u>2652001001</u>	Quad Cities 2	8/2/2001	Critical	SC	LOOP-IE-I	15	30	154	SEE	Lightning

						Restor	ation Time (m	_		
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Switchyard Restoration Time	Potential Bus Recovery Time	Actual Bus Restoration Time	Cause	Specific Cause
<u>2611992017</u>	Robinson 2	8/22/1992	Critical	SC	LOOP-IE-I	454	459	914	Equip	Transformer
<u>2611992017</u>	Robinson 2	8/22/1992	Critical	SC	LOOP-IE-I	454	459	914	Equip	Transformer
<u>2612016005</u>	Robinson 2	10/8/2016	Critical	SC	LOOP-IE-I	1	621	621	G	Equip - other
2722003002	Salem 1	7/29/2003	Critical	SC	LOOP-IE-I	30	40	480	Equip	Circuits
3111994014	Salem 2	11/18/1994	Shutdown	SC	LOOP-SD	295	300	1675	Equip	Relay
<u>3622002001</u>	San Onofre 3	2/27/2002	Critical	SC	LOOP-IE-I	32	32	32	HE	Testing
4431988004	Seabrook	8/10/1988	Shutdown	PC	LOOP-SD	4	5	5	HES	Switching
4431991008	Seabrook	6/27/1991	Critical	SC	LOOP-IE-I	0	20	20	Equip	Relay
4432001002	Seabrook	3/5/2001	Critical	WR	LOOP-IE-I	1	16	2122	SEE	Snow
3271992027	Sequoyah 1	12/31/1992	Critical	SC	LOOP-IE-I	96	101	116	Equip	Breaker
3271997007	Sequoyah 1	4/4/1997	Shutdown	PC	LOOP-SD	325	330	345	HE	Maintenance
3271992027	Sequoyah 2	12/31/1992	Critical	SC	LOOP-IE-I	96	101	116	Equip	Breaker
3352004004	St. Lucie 1	9/25/2004	Shutdown	WR	LOOP-SD	8	68	667	EEE	Hurricane
3352016003	St. Lucie 1	8/21/2016	Critical	PC	LOOP-IE-NC	1	70	70	Equip	Circuits
3352004004	St. Lucie 2	9/25/2004	Shutdown	WR	LOOP-SD	8	68	613	EEE	Hurricane
3951989012	Summer	7/11/1989	Critical	PC	LOOP-IE-C	95	100	120	G	Equip - other
<u>2802011001</u>	Surry 1	4/16/2011	Critical	WR	LOOP-IE-I	303	304	346	EEE	Tornado
<u>2802011001</u>	Surry 2	4/16/2011	Critical	WR	LOOP-IE-I	303	304	424	EEE	Tornado
<u>2891997007</u>	Three Mile Isl 1	6/21/1997	Critical	SC	LOOP-IE-I	85	90	90	Equip	Circuits

						Restor	ation Time (m	_		
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Switchyard Restoration Time	Potential Bus Recovery Time	Actual Bus Restoration Time	Cause	Specific Cause
2501992000	Turkey Point 3	8/24/1992	Shutdown	WR	LOOP-SD	7950	7955	9221	EEE	Hurricane
<u>2511991001</u>	Turkey Point 4	3/13/1991	Shutdown	PC	LOOP-SD	62	67	67	Equip	Relay
2501992000	Turkey Point 4	8/24/1992	Shutdown	WR	LOOP-SD	7908	7913	9442	EEE	Hurricane
<u>2512000004</u>	Turkey Point 4	10/21/2000	Shutdown	SC	LOOP-SD	1	16	111	Equip	Circuits
<u>2512005005</u>	Turkey Point 4	10/31/2005	Shutdown	WR	LOOP-SD	1	1598	1615	SEE	Salt Spray
<u>2512013002</u>	Turkey Point 4	4/19/2013	Critical	PC	LOOP-IE-NC	24	27	30	HE	Testing
<u>2711987008</u>	Vermont Yankee	8/17/1987	Shutdown	GR	LOOP-SD	2	17	77	Equip	Other
<u>2711991009</u>	Vermont Yankee	4/23/1991	Critical	PC	LOOP-IE-I	277	282	822	HE	Maintenance
<u>4241990006</u>	Vogtle 1	3/20/1990	Shutdown	SC	LOOP-SD	140	145	217	HES	Other
<u>3822005004</u>	Waterford 3	8/29/2005	Shutdown	WR	LOOP-SD	4981	4982	5242	EEE	Hurricane
3822017002	Waterford 3	7/17/2017	Critical	PC	LOOP-IE-I	145	158	158	Equip	Relay
<u>3822021002</u>	Waterford 3	8/29/2021	Decay Heat	WR	LOOP-SD	3206	3211	3211	EEE	Hurricane
4821987048	Wolf Creek	10/14/1987	Shutdown	PC	LOOP-SD	0	17	17	HES	Maintenance
4822008004	Wolf Creek	4/7/2008	Shutdown	SC	LOOP-SD	7	7	153	HES	Maintenance
4822009002	Wolf Creek	8/19/2009	Critical	WR	LOOP-IE-I	1	133	133	SEE	Lightning
<u>4822012001</u>	Wolf Creek	1/13/2012	Critical	SC	LOOP-IE-I	177	177	198	Equip	Breaker
<u>291991002</u>	Yankee-Rowe	6/15/1991	Critical	SC	LOOP-IE-I	24	25	25	SEE	Lightning
<u>2951997007</u>	Zion 1	3/11/1997	Shutdown	SC	LOOP-SD	235	240	240	Equip	Circuits
<u>3041991002</u>	Zion 2	3/21/1991	Critical	SC	LOOP-IE-I	0	60	60	Equip	Transformer

Table A-2. LOOP events showing restoration time uncertainty for 1987–2022.

			.	LOOP			itchyard storation		ntial Bus toration		ual Bus toration
LER	Plant Name	Date	Operating Mode	Category	LOOP Class	Time	Certainty ^a	Time	Certainty	Time	Certainty ^a
3132013001	Arkansas 1	3/31/2013	Shutdown	PC	LOOP-SD	unk.	U	8640	Е	8640	Е
3341993013	Beaver Valley 1	10/12/1993	Power Ops	SC	LOOP-IE-I	15	С	28	Е	28	C
4121987036	Beaver Valley 2	11/17/1987	Power Ops	SC	LOOP-IE-I	0	C	4	C	4	C
3341993013	Beaver Valley 2	10/12/1993	Shutdown	SC	LOOP-SD	15	C	28	Е	28	C
1551992000	Big Rock Point	1/29/1992	Shutdown	SC	LOOP-SD	77	E	82	Е	82	Е
<u>4561987048</u>	Braidwood 1	9/11/1987	Shutdown	SC	LOOP-SD	62	C	63	Е	63	C
4561988022	Braidwood 1	10/16/1988	Power Ops	SC	LOOP-IE-I	95	C	118	C	213	C
<u>4561998003</u>	Braidwood 1	9/6/1998	Shutdown	WR	LOOP-SD	528	E	533	Е	533	Е
4572009002	Braidwood 2	7/30/2009	Power Ops	SC	LOOP-IE-I	1	C	2	Е	3097	Е
<u>2592011001</u>	Browns Ferry 1	4/27/2011	Power Ops	WR	LOOP-IE-I	1	E	16	Е	7414	C
<u>2592011001</u>	Browns Ferry 2	4/27/2011	Power Ops	WR	LOOP-IE-I	1	E	16	Е	7414	C
<u>2961997001</u>	Browns Ferry 3	3/5/1997	Shutdown	SC	LOOP-SD	39	E	44	Е	44	C
<u>2592011001</u>	Browns Ferry 3	4/27/2011	Power Ops	WR	LOOP-IE-I	1	E	16	Е	7414	C
<u>2962012003</u>	Browns Ferry 3	5/22/2012	Power Ops	SC	LOOP-IE-I	86	E	91	Е	101	C
<u>2962019001</u>	Browns Ferry 3	3/9/2019	Power Ops	PC	LOOP-IE-NC	60	E	62	Е	781	Е
3251993008	Brunswick 1	3/17/1993	Shutdown	WR	LOOP-SD	1120	С	1125	Е	1508	C
<u>3252000001</u>	Brunswick 1	3/3/2000	Shutdown	SC	LOOP-SD	15	Е	30	Е	136	C
<u>3252004002</u>	Brunswick 1	8/14/2004	Power Ops	WR	LOOP-IE-I	167	С	172	Е	183	C
3252016001	Brunswick 1	2/7/2016	Power Ops	PC	LOOP-IE-I	1	E	16	Е	196	C

			On a nation of	1 00D			itchyard storation		ntial Bus toration		ual Bus toration
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Time	Certainty ^a	Time	Certainty ^a	Time	Certainty ^a
3252020003	Brunswick 1	8/3/2020	Power Ops	WR	LOOP-IE-I	838	Е	839	Е	898	Е
3241989009	Brunswick 2	6/17/1989	Power Ops	SC	LOOP-IE-I	85	E	90	C	403	С
3251993008	Brunswick 2	3/16/1993	Shutdown	WR	LOOP-SD	813	C	818	Е	1018	С
<u>3241994008</u>	Brunswick 2	5/21/1994	Shutdown	PC	LOOP-SD	2	C	17	Е	42	С
<u>3242006001</u>	Brunswick 2	11/1/2006	Power Ops	SC	LOOP-IE-I	1	E	16	Е	1456	С
<u>4541996007</u>	Byron 1	5/23/1996	Shutdown	SC	LOOP-SD	715	Е	720	C	1763	Е
<u>4542014003</u>	Byron 1	3/15/2014	Shutdown	SC	LOOP-SD	613	E	613	E	613	C
<u>4551987019</u>	Byron 2	10/2/1987	Power Ops	SC	LOOP-IE-C	1	E	16	E	507	C
<u>4542012001</u>	Byron 2	1/30/2012	Power Ops	SC	LOOP-IE-I	1	C	2035	C	2172	C
3171987012	Calvert Cliffs 1	7/23/1987	Power Ops	SC	LOOP-IE-I	113	E	118	C	118	C
3172015002	Calvert Cliffs 1	4/7/2015	Power Ops	GR	LOOP-IE-I	200	E	210	E	210	E
3171987012	Calvert Cliffs 2	7/23/1987	Power Ops	SC	LOOP-IE-I	113	Е	118	C	118	C
<u>3172015002</u>	Calvert Cliffs 2	4/7/2015	Power Ops	GR	LOOP-IE-NC	19	E	29	E	29	E
4132006001	Catawba 1	5/20/2006	Power Ops	SC	LOOP-IE-I	385	Е	400	C	542	C
4132012001	Catawba 1	4/4/2012	Power Ops	PC	LOOP-IE-C	325	E	326	E	326	E
<u>4141996001</u>	Catawba 2	2/6/1996	Power Ops	SC	LOOP-IE-I	115	C	120	E	330	C
4132006001	Catawba 2	5/20/2006	Power Ops	SC	LOOP-IE-I	372	E	387	C	570	C
4132012001	Catawba 2	4/4/2012	Shutdown	SC	LOOP-SD	60	E	61	E	393	C
<u>4611999002</u>	Clinton 1	1/6/1999	Shutdown	SC	LOOP-SD	270	C	275	E	492	C
<u>3971989016</u>	Columbia	5/14/1989	Shutdown	SC	LOOP-SD	0	C	15	Е	29	C

			0	LOOP			itchyard storation		ntial Bus toration	Actual Bus Restoration	
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Time	Certainty	Time	Certainty	Time	Certainty
3151991004	Cook 1	5/12/1991	Power Ops	PC	LOOP-IE-I	0	С	15	Е	81	C
<u>3021987025</u>	Crystal River 3	10/16/1987	Shutdown	SC	LOOP-SD	18	С	28	Е	59	C
3021989023	Crystal River 3	6/16/1989	Power Ops	SC	LOOP-IE-I	60	С	65	Е	65	E
3021989025	Crystal River 3	6/29/1989	Shutdown	SC	LOOP-SD	0	Е	2	С	2	C
<u>3021991010</u>	Crystal River 3	10/20/1991	Shutdown	PC	LOOP-SD	0	С	4	С	4	C
3021992001	Crystal River 3	3/27/1992	Power Ops	PC	LOOP-IE-I	20	Е	30	Е	150	C
3021993000	Crystal River 3	3/17/1993	Shutdown	WR	LOOP-SD	72	C	77	E	102	Е
3021993002	Crystal River 3	3/29/1993	Shutdown	WR	LOOP-SD	0	C	15	E	37	C
<u>3021993004</u>	Crystal River 3	4/8/1993	Shutdown	PC	LOOP-SD	1	Е	16	E	136	C
<u>3461998006</u>	Davis-Besse	6/24/1998	Power Ops	WR	LOOP-IE-I	1364	C	1428	C	1495	C
3462000004	Davis-Besse	4/22/2000	Shutdown	PC	LOOP-SD	5	Е	10	C	10	C
3462003009	Davis-Besse	8/14/2003	Shutdown	GR	LOOP-SD	652	C	657	E	849	C
<u>2751991004</u>	Diablo Canyon 1	3/7/1991	Shutdown	SC	LOOP-SD	261	C	285	C	285	C
2751995014	Diablo Canyon 1	10/21/1995	Shutdown	SC	LOOP-SD	40	C	45	Е	951	C
2752000004	Diablo Canyon 1	5/15/2000	Power Ops	PC	LOOP-IE-I	1901	C	1906	E	2014	C
2752007001	Diablo Canyon 1	5/12/2007	Shutdown	GR	LOOP-SD	209	C	245	C	279	C
3231988008	Diablo Canyon 2	7/17/1988	Power Ops	SC	LOOP-IE-I	33	E	38	C	38	C
2371990002	Dresden 2	1/16/1990	Power Ops	SC	LOOP-IE-C	0	C	45	Е	759	C
<u>2491989001</u>	Dresden 3	3/25/1989	Power Ops	SC	LOOP-IE-I	45	E	50	E	50	E
2492004003	Dresden 3	5/5/2004	Power Ops	SC	LOOP-IE-I	146	Е	151	Е	151	С

			Onovetie	1000			itchyard storation		ntial Bus toration	Actual Bus Restoration	
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Time	Certainty ^a	Time	Certainty ^a	Time	Certainty
3311990007	Duane Arnold	7/9/1990	Shutdown	SC	LOOP-SD	0	С	37	С	37	С
3312007004	Duane Arnold	2/24/2007	Shutdown	WR	LOOP-SD	5	C	1048	С	1829	С
3312020001	Duane Arnold	8/10/2020	Power Ops	WR	LOOP-IE-I	1514	E	1515	Е	1634	Е
<u>3482000005</u>	Farley 1	4/9/2000	Shutdown	SC	LOOP-SD	18	C	19	С	19	С
3412003002	Fermi 2	8/14/2003	Power Ops	GR	LOOP-IE-I	379	C	384	E	582	С
3331988011	FitzPatrick	10/31/1988	Shutdown	WR	LOOP-SD	1	C	16	Е	70	C
3332003001	FitzPatrick	8/14/2003	Power Ops	GR	LOOP-IE-I	169	C	174	E	414	C
3332012005	FitzPatrick	10/5/2012	Shutdown	SC	LOOP-SD	847	Е	847	Е	847	С
<u>2851987008</u>	Fort Calhoun	3/21/1987	Shutdown	SC	LOOP-SD	37	C	38	E	38	C
2851987009	Fort Calhoun	4/4/1987	Shutdown	SC	LOOP-SD	0	C	4	С	4	С
2851990006	Fort Calhoun	2/26/1990	Shutdown	SC	LOOP-SD	0	C	14	C	14	C
2851998005	Fort Calhoun	5/20/1998	Shutdown	SC	LOOP-SD	104	Е	109	E	109	C
<u>2851999004</u>	Fort Calhoun	10/26/1999	Shutdown	PC	LOOP-SD	2	C	2	C	2	C
2442003002	Ginna	8/14/2003	Power Ops	GR	LOOP-IE-I	49	C	54	E	297	C
4162003002	Grand Gulf	4/24/2003	Power Ops	SC	LOOP-IE-NC	1	E	15	E	75	E
2131993009	Haddam Neck	6/22/1993	Shutdown	PC	LOOP-SD	12	C	27	E	35	C
2131993010	Haddam Neck	6/26/1993	Shutdown	PC	LOOP-SD	3	E	18	E	40	E
4002016005	Harris	10/8/2016	Shutdown	WR	LOOP-SD	unk.	U	443	C	524	C
<u>2471991006</u>	Indian Point 2	3/20/1991	Shutdown	SC	LOOP-SD	0	C	15	E	29	C
<u>2471991010</u>	Indian Point 2	6/22/1991	Shutdown	PC	LOOP-SD	0	C	60	C	60	C

			0	1 00D	OOR		itchyard storation		ntial Bus toration	Actual Bus Restoration	
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Time	Certainty ^a	Time	Certainty ^a	Time	Certainty ^a
<u>2471998013</u>	Indian Point 2	9/1/1998	Shutdown	PC	LOOP-SD	1	Е	16	Е	67	C
<u>2471999015</u>	Indian Point 2	8/31/1999	Power Ops	SC	LOOP-IE-NC	1	E	15	Е	779	C
<u>2472003005</u>	Indian Point 2	8/14/2003	Power Ops	GR	LOOP-IE-I	97	С	102	Е	214	C
<u>2861995004</u>	Indian Point 3	2/27/1995	Shutdown	SC	LOOP-SD	30	Е	40	Е	132	C
2861996002	Indian Point 3	1/20/1996	Shutdown	SC	LOOP-SD	30	Е	40	Е	145	C
<u>2861997008</u>	Indian Point 3	6/16/1997	Shutdown	GR	LOOP-SD	37	Е	42	C	42	С
<u>2862003005</u>	Indian Point 3	8/14/2003	Power Ops	GR	LOOP-IE-I	97	С	102	E	241	C
<u>3731993015</u>	La Salle 1	9/14/1993	Power Ops	SC	LOOP-IE-I	0	C	15	E	70	C
<u>3732013002</u>	La Salle 1	4/17/2013	Power Ops	SC	LOOP-IE-NC	481	E	481	E	482	C
3732013002	La Salle 2	4/17/2013	Power Ops	SC	LOOP-IE-NC	481	Е	481	E	482	C
<u>3091988006</u>	Maine Yankee	8/13/1988	Power Ops	SC	LOOP-IE-I	14	С	15	E	15	C
<u>3691987021</u>	McGuire 1	9/16/1987	Shutdown	PC	LOOP-SD	0	C	6	C	6	C
<u>3691991001</u>	McGuire 1	2/11/1991	Power Ops	PC	LOOP-IE-I	0	С	40	C	60	Е
3691988014	McGuire 2	6/24/1988	Shutdown	SC	LOOP-SD	8	C	8	C	8	C
<u>3701993008</u>	McGuire 2	12/27/1993	Power Ops	SC	LOOP-IE-I	96	C	101	E	131	C
2451989012	Millstone 1	4/29/1989	Shutdown	SC	LOOP-SD	0	C	15	E	75	Е
3361988011	Millstone 2	10/25/1988	Power Ops	PC	LOOP-IE-I	19	E	29	E	29	E
3362008004	Millstone 2	5/24/2008	Shutdown	SC	LOOP-SD	57	C	57	C	1612	C
3362014006	Millstone 2	5/25/2014	Power Ops	GR	LOOP-IE-NC	179	Е	184	E	209	E
4232007002	Millstone 3	4/25/2007	Shutdown	GR	LOOP-SD	133	E	193	Е	220	C

			0	1 00D			itchyard storation		ntial Bus toration	Actual Bus Restoration	
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Time	Certainty	Time	Certainty ^a	Time	Certainty
3362014006	Millstone 3	5/25/2014	Power Ops	GR	LOOP-IE-NC	179	E	184	Е	209	E
2202003002	Nine Mile Pt. 1	8/14/2003	Power Ops	GR	LOOP-IE-NC	105	E	110	Е	448	C
4101988062	Nine Mile Pt. 2	12/26/1988	Shutdown	SC	LOOP-SD	9	С	24	Е	54	C
4101992006	Nine Mile Pt. 2	3/23/1992	Shutdown	PC	LOOP-SD	20	C	30	Е	50	Е
4102003002	Nine Mile Pt. 2	8/14/2003	Power Ops	GR	LOOP-IE-I	100	C	105	Е	551	C
3382011003	North Anna 1	8/23/2011	Power Ops	SC	LOOP-IE-NC	467	C	547	Е	547	C
3382011003	North Anna 2	8/23/2011	Power Ops	SC	LOOP-IE-NC	467	C	547	E	547	C
<u>2701992004</u>	Oconee 2	10/19/1992	Power Ops	PC	LOOP-IE-I	207	C	207	C	207	C
<u>2871987002</u>	Oconee 3	3/5/1987	Shutdown	SC	LOOP-SD	150	Е	155	E	155	C
<u>2872006001</u>	Oconee 3	5/15/2006	Shutdown	PC	LOOP-SD	606	C	606	Е	1730	C
<u>2872018002</u>	Oconee 3	5/10/2018	Shutdown	PC	LOOP-SD	807	E	807	Е	807	C
<u>2191989015</u>	Oyster Creek	5/18/1989	Power Ops	PC	LOOP-IE-I	1	Е	16	Е	54	C
<u>2191992005</u>	Oyster Creek	5/3/1992	Power Ops	GR	LOOP-IE-I	5	C	65	Е	1029	C
<u>2191997010</u>	Oyster Creek	8/1/1997	Power Ops	SC	LOOP-IE-C	30	Е	40	C	40	C
<u>2192009005</u>	Oyster Creek	7/12/2009	Power Ops	GR	LOOP-IE-I	94	C	103	С	103	C
<u>2551987024</u>	Palisades	7/14/1987	Power Ops	SC	LOOP-IE-I	388	С	388	C	446	C
<u>2551992032</u>	Palisades	4/6/1992	Shutdown	PC	LOOP-SD	0	С	15	E	30	Е
<u>2551998013</u>	Palisades	12/22/1998	Shutdown	PC	LOOP-SD	1	Е	16	Е	20	Е
<u>2552003003</u>	Palisades	3/25/2003	Shutdown	PC	LOOP-SD	91	E	96	E	3261	C
<u>5282004006</u>	Palo Verde 1	6/14/2004	Power Ops	GR	LOOP-IE-I	32	C	37	E	57	C

			0	1.00B			itchyard storation		ntial Bus toration	Actual Bus Restoration	
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Time	Certainty	Time	Certainty ^a	Time	Certainty
<u>5282004006</u>	Palo Verde 2	6/14/2004	Power Ops	GR	LOOP-IE-I	32	С	37	Е	106	C
<u>5282004006</u>	Palo Verde 3	6/14/2004	Power Ops	GR	LOOP-IE-I	32	C	37	Е	59	С
<u>2771988020</u>	Peach Bottom 2	7/29/1988	Shutdown	SC	LOOP-SD	9	E	24	С	125	C
<u>2772003004</u>	Peach Bottom 2	9/15/2003	Power Ops	GR	LOOP-IE-I	1	C	16	Е	41	Е
<u>2771988020</u>	Peach Bottom 3	7/29/1988	Shutdown	SC	LOOP-SD	9	Е	24	С	125	С
<u>2772003004</u>	Peach Bottom 3	9/15/2003	Power Ops	GR	LOOP-IE-I	1	С	16	Е	103	C
4402003002	Perry	8/14/2003	Power Ops	GR	LOOP-IE-I	82	C	87	E	123	C
<u>2931987005</u>	Pilgrim	3/31/1987	Shutdown	WR	LOOP-SD	1	Е	16	Е	45	C
<u>2931987014</u>	Pilgrim	11/12/1987	Shutdown	WR	LOOP-SD	1258	Е	1263	С	1263	C
<u>2931989010</u>	Pilgrim	2/21/1989	Shutdown	SC	LOOP-SD	1	Е	16	Е	920	C
<u>2931991024</u>	Pilgrim	10/30/1991	Decay Heat	WR	LOOP-SD	109	C	114	E	152	C
<u>2931993004</u>	Pilgrim	3/13/1993	Power Ops	WR	LOOP-IE-I	30	Е	40	E	298	C
<u>2931993004</u>	Pilgrim	3/13/1993	Power Ops	WR	LOOP-IE-I	30	Е	40	Е	298	C
<u>2551987024</u>	Palisades	7/14/1987	Power Ops	SC	LOOP-IE-I	388	C	388	С	446	C
<u>2931993010</u>	Pilgrim	5/19/1993	Shutdown	SC	LOOP-SD	36	C	37	С	37	C
2931993022	Pilgrim	9/10/1993	Power Ops	SC	LOOP-IE-I	10	С	25	E	200	C
<u>2931997007</u>	Pilgrim	4/1/1997	Shutdown	WR	LOOP-SD	347	C	1200	C	1409	C
<u>2932008007</u>	Pilgrim	12/20/2008	Shutdown	SC	LOOP-SD	2	Е	60	E	120	E
<u>2932013003</u>	Pilgrim	2/8/2013	Power Ops	WR	LOOP-IE-I	656	C	1258	C	1843	C
<u>2932013003</u>	Pilgrim	2/10/2013	Shutdown	SC	LOOP-SD	2271	C	2387	C	3333	C

			0	1 00D			itchyard storation		ntial Bus toration	Actual Bus Restoration	
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Time	Certainty	Time	Certainty ^a	Time	Certainty
<u>2932013009</u>	Pilgrim	10/14/2013	Power Ops	GR	LOOP-IE-I	1	Е	2	Е	1382	C
<u>2932015001</u>	Pilgrim	1/27/2015	Power Ops	WR	LOOP-IE-I	1	C	2	C	3641	C
<u>2932018004</u>	Pilgrim	3/13/2018	Shutdown	WR	LOOP-SD	720	Е	721	Е	4018	E
<u>2661992003</u>	Point Beach 1	4/28/1992	Shutdown	PC	LOOP-SD	0	C	15	Е	30	C
<u>2662011001</u>	Point Beach 1	11/27/2011	Shutdown	SC	LOOP-SD	1	E	16	Е	334	E
3011989002	Point Beach 2	3/29/1989	Power Ops	SC	LOOP-IE-C	90	E	95	Е	202	C
<u>2661994010</u>	Point Beach 2	9/27/1994	Shutdown	PC	LOOP-SD	0	C	15	Е	15	E
<u>2821996012</u>	Prairie Island 1	6/29/1996	Power Ops	WR	LOOP-IE-I	296	Е	301	Е	301	С
<u>2821996012</u>	Prairie Island 2	6/29/1996	Power Ops	WR	LOOP-IE-I	296	С	301	E	301	C
<u>2651991005</u>	Quad Cities 1	4/2/1991	Shutdown	PC	LOOP-SD	unk.	U	unk.	U	unk.	U
<u>2651992011</u>	Quad Cities 2	4/2/1992	Shutdown	PC	LOOP-SD	35	С	35	C	35	C
<u>2652001001</u>	Quad Cities 2	8/2/2001	Power Ops	SC	LOOP-IE-I	15	C	30	Е	154	C
<u>2611992017</u>	Robinson 2	8/22/1992	Power Ops	SC	LOOP-IE-I	454	C	459	Е	914	С
<u>2612016005</u>	Robinson 2	10/8/2016	Power Ops	SC	LOOP-IE-I	1	C	621	Е	621	Е
<u>2722003002</u>	Salem 1	7/29/2003	Power Ops	SC	LOOP-IE-I	30	Е	40	Е	480	C
<u>3111994014</u>	Salem 2	11/18/1994	Shutdown	SC	LOOP-SD	295	Е	300	C	1675	C
<u>3622002001</u>	San Onofre 3	2/27/2002	Power Ops	SC	LOOP-IE-I	32	Е	32	E	32	C
4431988004	Seabrook	8/10/1988	Shutdown	PC	LOOP-SD	4	Е	5	Е	5	Е
<u>4431991008</u>	Seabrook	6/27/1991	Power Ops	SC	LOOP-IE-I	0	C	20	C	20	C
<u>4432001002</u>	Seabrook	3/5/2001	Power Ops	WR	LOOP-IE-I	1	Е	16	E	2122	C

			0	1 00D			itchyard storation		ntial Bus toration	Actual Bus Restoration	
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Time	Certainty ^a	Time	Certainty ^a	Time	Certainty ^a
3271992027	Sequoyah 1	12/31/1992	Power Ops	SC	LOOP-IE-I	96	C	101	Е	116	Е
<u>3271997007</u>	Sequoyah 1	4/4/1997	Shutdown	PC	LOOP-SD	325	C	330	Е	345	E
3271992027	Sequoyah 2	12/31/1992	Power Ops	SC	LOOP-IE-I	96	C	101	Е	116	E
3352004004	St. Lucie 1	9/25/2004	Shutdown	WR	LOOP-SD	8	C	68	Е	667	C
3352016003	St. Lucie 1	8/21/2016	Power Ops	PC	LOOP-IE-NC	1	C	70	Е	70	C
3352004004	St. Lucie 2	9/25/2004	Shutdown	WR	LOOP-SD	8	C	68	Е	613	С
<u>3951989012</u>	Summer	7/11/1989	Power Ops	PC	LOOP-IE-C	95	C	100	E	120	C
<u>2802011001</u>	Surry 1	4/16/2011	Power Ops	WR	LOOP-IE-I	303	C	304	C	346	C
<u>2802011001</u>	Surry 2	4/16/2011	Power Ops	WR	LOOP-IE-I	303	C	304	C	424	C
<u>2891997007</u>	Three Mile Isl 1	6/21/1997	Power Ops	SC	LOOP-IE-I	85	E	90	C	90	C
<u>2501991003</u>	Turkey Point 3	7/24/1991	Shutdown	SC	LOOP-SD	0	C	11	C	11	C
2501992000	Turkey Point 3	8/24/1992	Shutdown	WR	LOOP-SD	7950	E	7955	E	9221	C
<u>2511991001</u>	Turkey Point 4	3/13/1991	Shutdown	PC	LOOP-SD	62	E	67	C	67	С
2501992000	Turkey Point 4	8/24/1992	Shutdown	WR	LOOP-SD	7908	E	7913	E	9442	C
<u>2512000004</u>	Turkey Point 4	10/21/2000	Shutdown	SC	LOOP-SD	1	E	16	E	111	C
<u>2512005005</u>	Turkey Point 4	10/31/2005	Shutdown	WR	LOOP-SD	1	E	1598	Е	1615	C
<u>2512013002</u>	Turkey Point 4	4/19/2013	Power Ops	PC	LOOP-IE-NC	24	E	27	E	30	C
<u>2711987008</u>	Vermont Yankee	8/17/1987	Shutdown	GR	LOOP-SD	2	C	17	E	77	E
<u>2711991009</u>	Vermont Yankee	4/23/1991	Power Ops	PC	LOOP-IE-I	277	С	282	E	822	С
<u>4241990006</u>	Vogtle 1	3/20/1990	Shutdown	SC	LOOP-SD	140	C	145	Е	217	C

57

							itchyard storation	Potential Bus Restoration		Actual Bus Restoration	
LER	Plant Name	Date	Operating Mode	LOOP Category	LOOP Class	Time	Certainty	Time	Certainty	Time	Certainty
<u>3822005004</u>	Waterford 3	8/29/2005	Shutdown	WR	LOOP-SD	4981	С	4982	C	5242	C
3822017002	Waterford 3	7/17/2017	Power Ops	PC	LOOP-IE-I	145	С	158	С	158	C
<u>3822021002</u>	Waterford 3	8/29/2021	Decay Heat	WR	LOOP-SD	3206	С	3211	E	3211	E
<u>4821987048</u>	Wolf Creek	10/14/1987	Shutdown	PC	LOOP-SD	0	C	17	Е	17	C
<u>4822008004</u>	Wolf Creek	4/7/2008	Shutdown	SC	LOOP-SD	7	C	7	C	153	C
4822009002	Wolf Creek	8/19/2009	Power Ops	WR	LOOP-IE-I	1	C	133	Е	133	E
<u>4822012001</u>	Wolf Creek	1/13/2012	Power Ops	SC	LOOP-IE-I	177	C	177	C	198	C
<u>291991002</u>	Yankee-Rowe	6/15/1991	Power Ops	SC	LOOP-IE-I	24	C	25	C	25	C
<u>2951997007</u>	Zion 1	3/11/1997	Shutdown	SC	LOOP-SD	235	Е	240	E	240	С

^aC: Known - The restoration time is certain.

U: Unknown - No information is available concerning the restoration time.

E: Estimated - The restoration time was estimated based on information in the LER.